Saha, Sajal
Intelligent Routing Algorithm over SDN: Reusable Reinforcement Learning Approach
Wumian, Wang, Saha, Sajal, Haque, Anwar, Sidebottom, Greg
Traffic routing is vital for the proper functioning of the Internet. As users and network traffic increase, researchers try to develop adaptive and intelligent routing algorithms that can fulfill various QoS requirements. Reinforcement Learning (RL) based routing algorithms have shown better performance than traditional approaches. We developed a QoS-aware, reusable RL routing algorithm, RLSR-Routing over SDN. During the learning process, our algorithm ensures loop-free path exploration. While finding the path for one traffic demand (a source destination pair with certain amount of traffic), RLSR-Routing learns the overall network QoS status, which can be used to speed up algorithm convergence when finding the path for other traffic demands. By adapting Segment Routing, our algorithm can achieve flow-based, source packet routing, and reduce communications required between SDN controller and network plane. Our algorithm shows better performance in terms of load balancing than the traditional approaches. It also has faster convergence than the non-reusable RL approach when finding paths for multiple traffic demands.
An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs
Baral, Sudipto, Saha, Sajal, Haque, Anwar
The exponential growth of the Internet of Things (IoT) has significantly increased the complexity and volume of cybersecurity threats, necessitating the development of advanced, scalable, and interpretable security frameworks. This paper presents an innovative, comprehensive framework for real-time IoT attack detection and response that leverages Machine Learning (ML), Explainable AI (XAI), and Large Language Models (LLM). By integrating XAI techniques such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) with a model-independent architecture, we ensure our framework's adaptability across various ML algorithms. Additionally, the incorporation of LLMs enhances the interpretability and accessibility of detection decisions, providing system administrators with actionable, human-understandable explanations of detected threats. Our end-to-end framework not only facilitates a seamless transition from model development to deployment but also represents a real-world application capability that is often lacking in existing research. Based on our experiments with the CIC-IOT-2023 dataset \cite{neto2023ciciot2023}, Gemini and OPENAI LLMS demonstrate unique strengths in attack mitigation: Gemini offers precise, focused strategies, while OPENAI provides extensive, in-depth security measures. Incorporating SHAP and LIME algorithms within XAI provides comprehensive insights into attack detection, emphasizing opportunities for model improvement through detailed feature analysis, fine-tuning, and the adaptation of misclassifications to enhance accuracy.
Overcoming Data Limitations in Internet Traffic Forecasting: LSTM Models with Transfer Learning and Wavelet Augmentation
Saha, Sajal, Haque, Anwar, Sidebottom, Greg
Effective internet traffic prediction in smaller ISP networks is challenged by limited data availability. This paper explores this issue using transfer learning and data augmentation techniques with two LSTM-based models, LSTMSeq2Seq and LSTMSeq2SeqAtn, initially trained on a comprehensive dataset provided by Juniper Networks and subsequently applied to smaller datasets. The datasets represent real internet traffic telemetry, offering insights into diverse traffic patterns across different network domains. Our study revealed that while both models performed well in single-step predictions, multi-step forecasts were challenging, particularly in terms of long-term accuracy. In smaller datasets, LSTMSeq2Seq generally outperformed LSTMSeq2SeqAtn, indicating that higher model complexity does not necessarily translate to better performance. The models' effectiveness varied across different network domains, reflecting the influence of distinct traffic characteristics. To address data scarcity, Discrete Wavelet Transform was used for data augmentation, leading to significant improvements in model performance, especially in shorter-term forecasts. Our analysis showed that data augmentation is crucial in scenarios with limited data. Additionally, the study included an analysis of the models' variability and consistency, with attention mechanisms in LSTMSeq2SeqAtn providing better short-term forecasting consistency but greater variability in longer forecasts. The results highlight the benefits and limitations of different modeling approaches in traffic prediction. Overall, this research underscores the importance of transfer learning and data augmentation in enhancing the accuracy of traffic prediction models, particularly in smaller ISP networks with limited data availability.
ConvLSTMTransNet: A Hybrid Deep Learning Approach for Internet Traffic Telemetry
Saha, Sajal, Das, Saikat, Carvalho, Glaucio H. S.
In this paper, we present a novel hybrid deep learning model, named ConvLSTMTransNet, designed for time series prediction, with a specific application to internet traffic telemetry. This model integrates the strengths of Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformer encoders to capture complex spatial-temporal relationships inherent in time series data. The ConvLSTMTransNet model was evaluated against three baseline models: RNN, LSTM, and Gated Recurrent Unit (GRU), using real internet traffic data sampled from high-speed ports on a provider edge router. Performance metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Weighted Absolute Percentage Error (WAPE) were used to assess each model's accuracy. Our findings demonstrate that ConvLSTMTransNet significantly outperforms the baseline models by approximately 10% in terms of prediction accuracy. ConvLSTMTransNet surpasses traditional models due to its innovative architectural features, which enhance its ability to capture temporal dependencies and extract spatial features from internet traffic data. Overall, these findings underscore the importance of employing advanced architectures tailored to the complexities of internet traffic data for achieving more precise predictions.
DEK-Forecaster: A Novel Deep Learning Model Integrated with EMD-KNN for Traffic Prediction
Saha, Sajal, Baral, Sudipto, Haque, Anwar
Internet traffic volume estimation has a significant impact on the business policies of the ISP (Internet Service Provider) industry and business successions. Forecasting the internet traffic demand helps to shed light on the future traffic trend, which is often helpful for ISPs decision-making in network planning activities and investments. Besides, the capability to understand future trend contributes to managing regular and long-term operations. This study aims to predict the network traffic volume demand using deep sequence methods that incorporate Empirical Mode Decomposition (EMD) based noise reduction, Empirical rule based outlier detection, and $K$-Nearest Neighbour (KNN) based outlier mitigation. In contrast to the former studies, the proposed model does not rely on a particular EMD decomposed component called Intrinsic Mode Function (IMF) for signal denoising. In our proposed traffic prediction model, we used an average of all IMFs components for signal denoising. Moreover, the abnormal data points are replaced by $K$ nearest data points average, and the value for $K$ has been optimized based on the KNN regressor prediction error measured in Root Mean Squared Error (RMSE). Finally, we selected the best time-lagged feature subset for our prediction model based on AutoRegressive Integrated Moving Average (ARIMA) and Akaike Information Criterion (AIC) value. Our experiments are conducted on real-world internet traffic datasets from industry, and the proposed method is compared with various traditional deep sequence baseline models. Our results show that the proposed EMD-KNN integrated prediction models outperform comparative models.