Goto

Collaborating Authors

 Saffiotti, Alessandro


Planning for Learning Object Properties

arXiv.org Artificial Intelligence

Autonomous agents embedded in a physical environment need the ability to recognize objects and their properties from sensory data. Such a perceptual ability is often implemented by supervised machine learning models, which are pre-trained using a set of labelled data. In real-world, open-ended deployments, however, it is unrealistic to assume to have a pre-trained model for all possible environments. Therefore, agents need to dynamically learn/adapt/extend their perceptual abilities online, in an autonomous way, by exploring and interacting with the environment where they operate. This paper describes a way to do so, by exploiting symbolic planning. Specifically, we formalize the problem of automatically training a neural network to recognize object properties as a symbolic planning problem (using PDDL). We use planning techniques to produce a strategy for automating the training dataset creation and the learning process. Finally, we provide an experimental evaluation in both a simulated and a real environment, which shows that the proposed approach is able to successfully learn how to recognize new object properties.


On some Foundational Aspects of Human-Centered Artificial Intelligence

arXiv.org Artificial Intelligence

The burgeoning of AI has prompted recommendations that AI techniques should be "human-centered". However, there is no clear definition of what is meant by Human Centered Artificial Intelligence, or for short, HCAI. This paper aims to improve this situation by addressing some foundational aspects of HCAI. To do so, we introduce the term HCAI agent to refer to any physical or software computational agent equipped with AI components and that interacts and/or collaborates with humans. This article identifies five main conceptual components that participate in an HCAI agent: Observations, Requirements, Actions, Explanations and Models. We see the notion of HCAI agent, together with its components and functions, as a way to bridge the technical and non-technical discussions on human-centered AI. In this paper, we focus our analysis on scenarios consisting of a single agent operating in dynamic environments in presence of humans.


Towards Abstract Relational Learning in Human Robot Interaction

arXiv.org Artificial Intelligence

Humans have a rich representation of the entities in their environment. Entities are described by their attributes, and entities that share attributes are often semantically related. For example, if two books have "Natural Language Processing" as the value of their `title' attribute, we can expect that their `topic' attribute will also be equal, namely, "NLP". Humans tend to generalize such observations, and infer sufficient conditions under which the `topic' attribute of any entity is "NLP". If robots need to interact successfully with humans, they need to represent entities, attributes, and generalizations in a similar way. This ends in a contextualized cognitive agent that can adapt its understanding, where context provides sufficient conditions for a correct understanding. In this work, we address the problem of how to obtain these representations through human-robot interaction. We integrate visual perception and natural language input to incrementally build a semantic model of the world, and then use inductive reasoning to infer logical rules that capture generic semantic relations, true in this model. These relations can be used to enrich the human-robot interaction, to populate a knowledge base with inferred facts, or to remove uncertainty in the robot's sensory inputs.


Robby is Not a Robber (anymore): On the Use of Institutions for Learning Normative Behavior

arXiv.org Artificial Intelligence

We show how norms can be used to guide a reinforcement learning agent towards achieving normative behavior and apply the same set of norms over different domains. Thus, we are able to: (1) provide a way to intuitively encode social knowledge (through norms); (2) guide learning towards normative behaviors (through an automatic norm reward system); and (3) achieve a transfer of learning by abstracting policies; Finally, (4) the method is not dependent on a particular RL algorithm. We show how our approach can be seen as a means to achieve abstract representation and learn procedural knowledge based on the declarative semantics of norms and discuss possible implications of this in some areas of cognitive science. Index T erms --Norms, Institutions, Automatic Reward Shaping, Transfer of Learning, Abstract Policies, Abstraction, State-Space Selection, Schema I. I NTRODUCTION In order to be accepted in human society, robots need to comply with human social norms.


Anticipation in collaborative music performance using fuzzy systems: a case study

arXiv.org Artificial Intelligence

The creation and performance of music has inspired AI researchers since the very early times of artificial intelligence [8, 13, 10], and there is today a rich literature of computational approaches to music [11], including AI systems for music composition [3] and improvisation [2]. As pointed out by Thom [15], however, these systems rarely focus on the spontanous interaction between the human and the artificial musicians. We claim that such interaction demands a combination of reactivity and anticipation, that is, the ability to act now based on a predictive model of the companion player [12]. This paper reports our initial steps in the generation of collaborative human-machine music performance, as a special case of the more general problem of anticipation and creative processes in mixed human-robot, or anthrobotic systems [4]. We consider a simple case study of a duo consisting of a human pianist accompained by an off-the-shelf virtual drummer, and we design an AI system to control the key perfomance parameters of the virtual drummer (patterns, intensity, complexity, fills, and so on) as a function of what the human pianist is playing. The AI system is knowledge-based: it relies on an internal model represented by means of fuzzy logic.


Learning from Implicit Information in Natural Language Instructions for Robotic Manipulations

arXiv.org Artificial Intelligence

Human-robot interaction often occurs in the form of instructions given from a human to a robot. For a robot to successfully follow instructions, a common representation of the world and objects in it should be shared between humans and the robot so that the instructions can be grounded. Achieving this representation can be done via learning, where both the world representation and the language grounding are learned simultaneously. However, in robotics this can be a difficult task due to the cost and scarcity of data. In this paper, we tackle the problem by separately learning the world representation of the robot and the language grounding. While this approach can address the challenges in getting sufficient data, it may give rise to inconsistencies between both learned components. Therefore, we further propose Bayesian learning to resolve such inconsistencies between the natural language grounding and a robot's world representation by exploiting spatio-relational information that is implicitly present in instructions given by a human. Moreover, we demonstrate the feasibility of our approach on a scenario involving a robotic arm in the physical world.


Norms, Institutions, and Robots

arXiv.org Artificial Intelligence

Interactions within human societies are usually regulated by social norms. If robots are to be accepted into human society, it is essential that they are aware of and capable of reasoning about social norms. In this paper, we focus on how to represent social norms in societies with humans and robots, and how artificial agents such as robots can reason about social norms in order to plan appropriate behavior. We use the notion of institution as a way to formally define and encapsulate norms. We provide a formal framework built around the notion of institution. The framework distinguishes between abstract norms and their semantics in a concrete domain, hence allowing the use of the same institution across physical domains and agent types. It also provides a formal computational framework for norm verification, planning, and plan execution in a domain.


Reports of the AAAI 2014 Conference Workshops

AI Magazine

The AAAI-14 Workshop program was held Sunday and Monday, July 27–28, 2012, at the Québec City Convention Centre in Québec, Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities -- Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.


Reports of the AAAI 2014 Conference Workshops

AI Magazine

The AAAI-14 Workshop program was held Sunday and Monday, July 27–28, 2012, at the Québec City Convention Centre in Québec, Canada. Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities — Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.


Organizers

AAAI Conferences

List of organizers of the List of organizers of the AI and Robotics AAAI-14 Workshop.