Goto

Collaborating Authors

 Sadedin, Suzanne


A social path to human-like artificial intelligence

arXiv.org Artificial Intelligence

Traditionally, cognitive and computer scientists have viewed intelligence solipsistically, as a property of unitary agents devoid of social context. Given the success of contemporary learning algorithms, we argue that the bottleneck in artificial intelligence (AI) progress is shifting from data assimilation to novel data generation. We bring together evidence showing that natural intelligence emerges at multiple scales in networks of interacting agents via collective living, social relationships and major evolutionary transitions, which contribute to novel data generation through mechanisms such as population pressures, arms races, Machiavellian selection, social learning and cumulative culture. Many breakthroughs in AI exploit some of these processes, from multi-agent structures enabling algorithms to master complex games like Capture-The-Flag and StarCraft II, to strategic communication in Diplomacy and the shaping of AI data streams by other AIs. Moving beyond a solipsistic view of agency to integrate these mechanisms suggests a path to human-like compounding innovation through ongoing novel data generation.


Statistical discrimination in learning agents

arXiv.org Artificial Intelligence

Undesired bias afflicts both human and algorithmic decision making, and may be especially prevalent when information processing trade-offs incentivize the use of heuristics. One primary example is \textit{statistical discrimination} -- selecting social partners based not on their underlying attributes, but on readily perceptible characteristics that covary with their suitability for the task at hand. We present a theoretical model to examine how information processing influences statistical discrimination and test its predictions using multi-agent reinforcement learning with various agent architectures in a partner choice-based social dilemma. As predicted, statistical discrimination emerges in agent policies as a function of both the bias in the training population and of agent architecture. All agents showed substantial statistical discrimination, defaulting to using the readily available correlates instead of the outcome relevant features. We show that less discrimination emerges with agents that use recurrent neural networks, and when their training environment has less bias. However, all agent algorithms we tried still exhibited substantial bias after learning in biased training populations.