Goto

Collaborating Authors

 Sadagopan, Narayanan


DARD: A Multi-Agent Approach for Task-Oriented Dialog Systems

arXiv.org Artificial Intelligence

Task-oriented dialogue systems are essential for applications ranging from customer service to personal assistants and are widely used across various industries. However, developing effective multi-domain systems remains a significant challenge due to the complexity of handling diverse user intents, entity types, and domain-specific knowledge across several domains. In this work, we propose DARD (Domain Assigned Response Delegation), a multi-agent conversational system capable of successfully handling multi-domain dialogs. DARD leverages domain-specific agents, orchestrated by a central dialog manager agent. Our extensive experiments compare and utilize various agent modeling approaches, combining the strengths of smaller fine-tuned models (Flan-T5-large & Mistral-7B) with their larger counterparts, Large Language Models (LLMs) (Claude Sonnet 3.0). We provide insights into the strengths and limitations of each approach, highlighting the benefits of our multi-agent framework in terms of flexibility and composability. We evaluate DARD using the well-established MultiWOZ benchmark, achieving state-of-the-art performance by improving the dialogue inform rate by 6.6% and the success rate by 4.1% over the best-performing existing approaches. Additionally, we discuss various annotator discrepancies and issues within the MultiWOZ dataset and its evaluation system.


AXCEL: Automated eXplainable Consistency Evaluation using LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are widely used in both industry and academia for various tasks, yet evaluating the consistency of generated text responses continues to be a challenge. Traditional metrics like ROUGE and BLEU show a weak correlation with human judgment. More sophisticated metrics using Natural Language Inference (NLI) have shown improved correlations but are complex to implement, require domain-specific training due to poor cross-domain generalization, and lack explainability. More recently, prompt-based metrics using LLMs as evaluators have emerged; while they are easier to implement, they still lack explainability and depend on task-specific prompts, which limits their generalizability. This work introduces Automated eXplainable Consistency Evaluation using LLMs (AXCEL), a prompt-based consistency metric which offers explanations for the consistency scores by providing detailed reasoning and pinpointing inconsistent text spans. AXCEL is also a generalizable metric which can be adopted to multiple tasks without changing the prompt. AXCEL outperforms both non-prompt and prompt-based state-of-the-art (SOTA) metrics in detecting inconsistencies across summarization by 8.7%, free text generation by 6.2%, and data-to-text conversion tasks by 29.4%. We also evaluate the influence of underlying LLMs on prompt based metric performance and recalibrate the SOTA prompt-based metrics with the latest LLMs for fair comparison. Further, we show that AXCEL demonstrates strong performance using open source LLMs.


RecXplainer: Amortized Attribute-based Personalized Explanations for Recommender Systems

arXiv.org Artificial Intelligence

Recommender systems influence many of our interactions in the digital world -- impacting how we shop for clothes, sorting what we see when browsing YouTube or TikTok, and determining which restaurants and hotels we are shown when using hospitality platforms. Modern recommender systems are large, opaque models trained on a mixture of proprietary and open-source datasets. Naturally, issues of trust arise on both the developer and user side: is the system working correctly, and why did a user receive (or not receive) a particular recommendation? Providing an explanation alongside a recommendation alleviates some of these concerns. The status quo for auxiliary recommender system feedback is either user-specific explanations (e.g., "users who bought item B also bought item A") or item-specific explanations (e.g., "we are recommending item A because you watched/bought item B"). However, users bring personalized context into their search experience, valuing an item as a function of that item's attributes and their own personal preferences. In this work, we propose RecXplainer, a novel method for generating fine-grained explanations based on a user's preferences over the attributes of recommended items. We evaluate RecXplainer on five real-world and large-scale recommendation datasets using five different kinds of recommender systems to demonstrate the efficacy of RecXplainer in capturing users' preferences over item attributes and using them to explain recommendations. We also compare RecXplainer to five baselines and show RecXplainer's exceptional performance on ten metrics.


PATCorrect: Non-autoregressive Phoneme-augmented Transformer for ASR Error Correction

arXiv.org Artificial Intelligence

Speech-to-text errors made by automatic speech recognition (ASR) systems negatively impact downstream models. Error correction models as a post-processing text editing method have been recently developed for refining the ASR outputs. However, efficient models that meet the low latency requirements of industrial grade production systems have not been well studied. We propose PATCorrect-a novel non-autoregressive (NAR) approach based on multi-modal fusion leveraging representations from both text and phoneme modalities, to reduce word error rate (WER) and perform robustly with varying input transcription quality. We demonstrate that PATCorrect consistently outperforms state-of-the-art NAR method on English corpus across different upstream ASR systems, with an overall 11.62% WER reduction (WERR) compared to 9.46% WERR achieved by other methods using text only modality. Besides, its inference latency is at tens of milliseconds, making it ideal for systems with low latency requirements.


Contextual Multi-Armed Bandits for Causal Marketing

arXiv.org Machine Learning

This work explores the idea of a causal contextual multi-armed bandit approach to automated marketing, where we estimate and optimize the causal (incremental) effects. Focusing on causal effect leads to better return on investment (ROI) by targeting only the persuadable customers who wouldn't have taken the action organically. Our approach draws on strengths of causal inference, uplift modeling, and multi-armed bandits. It optimizes on causal treatment effects rather than pure outcome, and incorporates counterfactual generation within data collection. Following uplift modeling results, we optimize over the incremental business metric. Multi-armed bandit methods allow us to scale to multiple treatments and to perform off-policy policy evaluation on logged data. The Thompson sampling strategy in particular enables exploration of treatments on similar customer contexts and materialization of counterfactual outcomes. Preliminary offline experiments on a retail Fashion marketing dataset show merits of our proposal.


Session Based Click Features for Recency Ranking

AAAI Conferences

Recency ranking refers to the ranking of web results by accounting for both relevance and freshness. This is particularly important for "recency sensitive" queries such as breaking news queries. In this study, we propose a set of novel click features to improve machine learned recency ranking. Rather than computing simple aggregate click through rates, we derive these features using the temporal click through data and query reformulation chains. One of the features that we use is click buzz that captures the spiking interest of a url for a query. We also propose time weighted click through rates which treat recent observations as being exponentially more important. The promotion of fresh content is typically determined by the query intent which can change dynamically over time. Quite often users query reformulations convey clues about the query's intent. Hence we enrich our click features by following query reformulations which typically benefit the first query in the chain of reformulations. Our experiments show these novel features can improve the NDCG5 of a major online search engine's ranking for "recency sensitive" queries by up to 1.57%. This is one of the very few studies that exploits temporal click through data and query reformulations for recency ranking.