Sack, Harald
Semantic Web and Creative AI -- A Technical Report from ISWS 2023
Ahmad, Raia Abu, Alharbi, Reham, Barile, Roberto, Böckling, Martin, Bolanos, Francisco, Bonfitto, Sara, Bruns, Oleksandra, Celino, Irene, Chudasama, Yashrajsinh, Critelli, Martin, d'Amato, Claudia, D'Ippolito, Giada, Dasoulas, Ioannis, De Giorgis, Stefano, De Leo, Vincenzo, Di Bonaventura, Chiara, Di Panfilo, Marco, Dobriy, Daniil, Domingue, John, Duan, Xuemin, Dumontier, Michel, Efeoglu, Sefika, Eschauzier, Ruben, Ginwa, Fakih, Ferranti, Nicolas, Graciotti, Arianna, Hanisch, Philipp, Hannah, George, Heidari, Golsa, Hogan, Aidan, Hussein, Hassan, Jouglar, Alexane, Kalo, Jan-Christoph, Kieffer, Manoé, Klironomos, Antonis, Koch, Inês, Lajewska, Weronika, Lazzari, Nicolas, Lindekrans, Mikael, Lippolis, Anna Sofia, Llugiqi, Majlinda, Mancini, Eleonora, Marzi, Eleonora, Menotti, Laura, Flores, Daniela Milon, Nagowah, Soulakshmee, Neubert, Kerstin, Niazmand, Emetis, Norouzi, Ebrahim, Martinez, Beatriz Olarte, Oudshoorn, Anouk Michelle, Poltronieri, Andrea, Presutti, Valentina, Purohit, Disha, Raoufi, Ensiyeh, Ringwald, Celian, Rockstroh, Johanna, Rudolph, Sebastian, Sack, Harald, Saeed, Zafar, Saeedizade, Mohammad Javad, Sahbi, Aya, Santini, Cristian, Simic, Aleksandra, Sommer, Dennis, Sousa, Rita, Tan, Mary Ann, Tarikere, Vidyashree, Tietz, Tabea, Tirpitz, Liam, Tomasino, Arnaldo, van Harmelen, Frank, Vissoci, Joao, Woods, Caitlin, Zhang, Bohui, Zhang, Xinyue, Zheng, Heng
The International Semantic Web Research School (ISWS) is a week-long intensive program designed to immerse participants in the field. This document reports a collaborative effort performed by ten teams of students, each guided by a senior researcher as their mentor, attending ISWS 2023. Each team provided a different perspective to the topic of creative AI, substantiated by a set of research questions as the main subject of their investigation. The 2023 edition of ISWS focuses on the intersection of Semantic Web technologies and Creative AI. ISWS 2023 explored various intersections between Semantic Web technologies and creative AI. A key area of focus was the potential of LLMs as support tools for knowledge engineering. Participants also delved into the multifaceted applications of LLMs, including legal aspects of creative content production, humans in the loop, decentralised approaches to multimodal generative AI models, nanopublications and AI for personal scientific knowledge graphs, commonsense knowledge in automatic story and narrative completion, generative AI for art critique, prompt engineering, automatic music composition, commonsense prototyping and conceptual blending, and elicitation of tacit knowledge. As Large Language Models and semantic technologies continue to evolve, new exciting prospects are emerging: a future where the boundaries between creative expression and factual knowledge become increasingly permeable and porous, leading to a world of knowledge that is both informative and inspiring.
NFDIcore 2.0: A BFO-Compliant Ontology for Multi-Domain Research Infrastructures
Bruns, Oleksandra, Tietz, Tabea, Waitelonis, Joerg, Posthumus, Etienne, Sack, Harald
This paper presents NFDIcore 2.0, an ontology compliant with the Basic Formal Ontology (BFO) designed to represent the diverse research communities of the National Research Data Infrastructure (NFDI) in Germany. NFDIcore ensures the interoperability across various research disciplines, thereby facilitating cross-domain research. Each domain's individual requirements are addressed through specific ontology modules. This paper discusses lessons learned during the ontology development and mapping process, supported by practical validation through use cases in diverse research domains. The originality of NFDIcore lies in its adherence to BFO, the use of SWRL rules for efficient knowledge discovery, and its modular, extensible design tailored to meet the needs of heterogeneous research domains.
Multimodal Search on Iconclass using Vision-Language Pre-Trained Models
Santini, Cristian, Posthumus, Etienne, Tan, Mary Ann, Bruns, Oleksandra, Tietz, Tabea, Sack, Harald
Terminology sources, such as controlled vocabularies, thesauri and classification systems, play a key role in digitizing cultural heritage. However, Information Retrieval (IR) systems that allow to query and explore these lexical resources often lack an adequate representation of the semantics behind the user's search, which can be conveyed through multiple expression modalities (e.g., images, keywords or textual descriptions). This paper presents the implementation of a new search engine for one of the most widely used iconography classification system, Iconclass. The novelty of this system is the use of a pre-trained vision-language model, namely CLIP, to retrieve and explore Iconclass concepts using visual or textual queries.
RAILD: Towards Leveraging Relation Features for Inductive Link Prediction In Knowledge Graphs
Gesese, Genet Asefa, Sack, Harald, Alam, Mehwish
Due to the open world assumption, Knowledge Graphs (KGs) are never complete. In order to address this issue, various Link Prediction (LP) methods are proposed so far. Some of these methods are inductive LP models which are capable of learning representations for entities not seen during training. However, to the best of our knowledge, none of the existing inductive LP models focus on learning representations for unseen relations. In this work, a novel Relation Aware Inductive Link preDiction (RAILD) is proposed for KG completion which learns representations for both unseen entities and unseen relations. In addition to leveraging textual literals associated with both entities and relations by employing language models, RAILD also introduces a novel graph-based approach to generate features for relations. Experiments are conducted with different existing and newly created challenging benchmark datasets and the results indicate that RAILD leads to performance improvement over the state-of-the-art models. Moreover, since there are no existing inductive LP models which learn representations for unseen relations, we have created our own baselines and the results obtained with RAILD also outperform these baselines.
Entity Type Prediction Leveraging Graph Walks and Entity Descriptions
Biswas, Russa, Portisch, Jan, Paulheim, Heiko, Sack, Harald, Alam, Mehwish
The entity type information in Knowledge Graphs (KGs) such as DBpedia, Freebase, etc. is often incomplete due to automated generation or human curation. Entity typing is the task of assigning or inferring the semantic type of an entity in a KG. This paper presents \textit{GRAND}, a novel approach for entity typing leveraging different graph walk strategies in RDF2vec together with textual entity descriptions. RDF2vec first generates graph walks and then uses a language model to obtain embeddings for each node in the graph. This study shows that the walk generation strategy and the embedding model have a significant effect on the performance of the entity typing task. The proposed approach outperforms the baseline approaches on the benchmark datasets DBpedia and FIGER for entity typing in KGs for both fine-grained and coarse-grained classes. The results show that the combination of order-aware RDF2vec variants together with the contextual embeddings of the textual entity descriptions achieve the best results.
A Knowledge Graph Embeddings based Approach for Author Name Disambiguation using Literals
Santini, Cristian, Gesese, Genet Asefa, Peroni, Silvio, Gangemi, Aldo, Sack, Harald, Alam, Mehwish
Data available in scholarly knowledge graphs (SKGs) - i.e., "a graph of data intended to accumulate and convey knowledge of the real world, whose nodes represent entities of interest and whose edges represent potentially different relations between these entities" [14] - is growing continuously every day, leading to a plethora of challenges concerning, for instance, article exploration and visualization [17], article recommendation [3], citation recommendation [11], and Author Name Disambiguation (AND) [24], which is relevant for the purposes of the present article. In particular, AND refers to a specific task of entity resolution which aims at resolving author mentions in bibliographic references to real-world people. Author persistent identifiers, such as ORCIDs and VIAFs, simplify the AND activity since such identifiers can be used for reconciling entities defined as different objects and representing the same real-world person. However, the availability of such persistent identifiers in SKGs - such as OpenCitations (OC) [22], AMiner [27] and Microsoft Academic Knowledge Graph (MAKG) [10] - is characterized by very low coverage and, as such, additional and computationally-oriented techniques must be adopted to identify different authors as the same person. In the past, many automatic approaches have been developed to automatically address AND by using publications metadata (e.g., title, abstract, keywords, venue, affiliation, etc.) to extract some features which can be used in the disambiguation task. These methods vary widely from supervised learning methods to unsupervised learning including recently developed deep neural network-based architectures [31]. However, the existing SKGs do not provide all the relevant contextual information necessary to reuse effectively and efficiently such approaches, that often rely on pure textual data. In contrast with the approaches mentioned above, this study focuses on performing AND for scholarly data represented as linked data or included in SKGs by considering the multi-modal information available in such collections, i.e., the structural information consisting of entities and relations between them as well as text or numeric values associated with the authors and publications defined in the form of literals (family name, given name, publication title, venue title, year of publication, etc.). The proposed framework to address this task is named Literally Author Name Disambiguation (LAND), which focuses on tackling the following research questions: - Can Knowledge Graph Embeddings (KGEs) - i.e. a technique that enables the creation of a "dense representation of the graph in a continuous, low-dimensional vector space that can then be used for machine learning tasks"[13] - be used effectively for the downstream task of clustering, more specifically for author name disambiguation?
MigrationsKB: A Knowledge Base of Public Attitudes towards Migrations and their Driving Factors
Chen, Yiyi, Sack, Harald, Alam, Mehwish
With the increasing trend in the topic of migration in Europe, the public is now more engaged in expressing their opinions through various platforms such as Twitter. Understanding the online discourses is therefore essential to capture the public opinion. The goal of this study is the analysis of social media platform to quantify public attitudes towards migrations and the identification of different factors causing these attitudes. The tweets spanning from 2013 to Jul-2021 in the European countries which are hosts to immigrants are collected, pre-processed, and filtered using advanced topic modeling technique. BERT-based entity linking and sentiment analysis, and attention-based hate speech detection are performed to annotate the curated tweets. Moreover, the external databases are used to identify the potential social and economic factors causing negative attitudes of the people about migration. To further promote research in the interdisciplinary fields of social science and computer science, the outcomes are integrated into a Knowledge Base (KB), i.e., MigrationsKB which significantly extends the existing models to take into account the public attitudes towards migrations and the economic indicators. This KB is made public using FAIR principles, which can be queried through SPARQL endpoint. Data dumps are made available on Zenodo.
Knowledge Graphs Evolution and Preservation -- A Technical Report from ISWS 2019
Abbas, Nacira, Alghamdi, Kholoud, Alinam, Mortaza, Alloatti, Francesca, Amaral, Glenda, d'Amato, Claudia, Asprino, Luigi, Beno, Martin, Bensmann, Felix, Biswas, Russa, Cai, Ling, Capshaw, Riley, Carriero, Valentina Anita, Celino, Irene, Dadoun, Amine, De Giorgis, Stefano, Delva, Harm, Domingue, John, Dumontier, Michel, Emonet, Vincent, van Erp, Marieke, Arias, Paola Espinoza, Fallatah, Omaima, Ferrada, Sebastián, Ocaña, Marc Gallofré, Georgiou, Michalis, Gesese, Genet Asefa, Gillis-Webber, Frances, Giovannetti, Francesca, Buey, Marìa Granados, Harrando, Ismail, Heibi, Ivan, Horta, Vitor, Huber, Laurine, Igne, Federico, Jaradeh, Mohamad Yaser, Keshan, Neha, Koleva, Aneta, Koteich, Bilal, Kurniawan, Kabul, Liu, Mengya, Ma, Chuangtao, Maas, Lientje, Mansfield, Martin, Mariani, Fabio, Marzi, Eleonora, Mesbah, Sepideh, Mistry, Maheshkumar, Tirado, Alba Catalina Morales, Nguyen, Anna, Nguyen, Viet Bach, Oelen, Allard, Pasqual, Valentina, Paulheim, Heiko, Polleres, Axel, Porena, Margherita, Portisch, Jan, Presutti, Valentina, Pustu-Iren, Kader, Mendez, Ariam Rivas, Roshankish, Soheil, Rudolph, Sebastian, Sack, Harald, Sakor, Ahmad, Salas, Jaime, Schleider, Thomas, Shi, Meilin, Spinaci, Gianmarco, Sun, Chang, Tietz, Tabea, Dhouib, Molka Tounsi, Umbrico, Alessandro, Berg, Wouter van den, Xu, Weiqin
One of the grand challenges discussed during the Dagstuhl Seminar "Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web" and described in its report is that of a: "Public FAIR Knowledge Graph of Everything: We increasingly see the creation of knowledge graphs that capture information about the entirety of a class of entities. [...] This grand challenge extends this further by asking if we can create a knowledge graph of "everything" ranging from common sense concepts to location based entities. This knowledge graph should be "open to the public" in a FAIR manner democratizing this mass amount of knowledge." Although linked open data (LOD) is one knowledge graph, it is the closest realisation (and probably the only one) to a public FAIR Knowledge Graph (KG) of everything. Surely, LOD provides a unique testbed for experimenting and evaluating research hypotheses on open and FAIR KG. One of the most neglected FAIR issues about KGs is their ongoing evolution and long term preservation. We want to investigate this problem, that is to understand what preserving and supporting the evolution of KGs means and how these problems can be addressed. Clearly, the problem can be approached from different perspectives and may require the development of different approaches, including new theories, ontologies, metrics, strategies, procedures, etc. This document reports a collaborative effort performed by 9 teams of students, each guided by a senior researcher as their mentor, attending the International Semantic Web Research School (ISWS 2019). Each team provides a different perspective to the problem of knowledge graph evolution substantiated by a set of research questions as the main subject of their investigation. In addition, they provide their working definition for KG preservation and evolution.
Entity Type Prediction in Knowledge Graphs using Embeddings
Biswas, Russa, Sofronova, Radina, Alam, Mehwish, Sack, Harald
Open Knowledge Graphs (such as DBpedia, Wikidata, YAGO) have been recognized as the backbone of diverse applications in the field of data mining and information retrieval. Hence, the completeness and correctness of the Knowledge Graphs (KGs) are vital. Most of these KGs are mostly created either via an automated information extraction from Wikipedia snapshots or information accumulation provided by the users or using heuristics. However, it has been observed that the type information of these KGs is often noisy, incomplete, and incorrect. To deal with this problem a multi-label classification approach is proposed in this work for entity typing using KG embeddings. We compare our approach with the current state-of-the-art type prediction method and report on experiments with the KGs.
A Survey on Knowledge Graph Embeddings with Literals: Which model links better Literal-ly?
Gesese, Genet Asefa, Biswas, Russa, Alam, Mehwish, Sack, Harald
Knowledge Graphs (KGs) are composed of structured information about a particular domain in the form of entities and relations. In addition to the structured information KGs help in facilitating interconnectivity and interoperability between different resources represented in the Linked Data Cloud. KGs have been used in a variety of applications such as entity linking, question answering, recommender systems, etc. However, KG applications suffer from high computational and storage costs. Hence, there arises the necessity for a representation able to map the high dimensional KGs into low dimensional spaces, i.e., embedding space, preserving structural as well as relational information. This paper conducts a survey of KG embedding models which not only consider the structured information contained in the form of entities and relations in a KG but also the unstructured information represented as literals such as text, numerical values, images, etc. Along with a theoretical analysis and comparison of the methods proposed so far for generating KG embeddings with literals, an empirical evaluation of the different methods under identical settings has been performed for the general task of link prediction.