Sæbø, Solve
Explainable Bayesian deep learning through input-skip Latent Binary Bayesian Neural Networks
Høyheim, Eirik, Skaaret-Lund, Lars, Sæbø, Solve, Hubin, Aliaksandr
Modeling natural phenomena with artificial neural networks (ANNs) often provides highly accurate predictions. However, ANNs often suffer from over-parameterization, complicating interpretation and raising uncertainty issues. Bayesian neural networks (BNNs) address the latter by representing weights as probability distributions, allowing for predictive uncertainty evaluation. Latent binary Bayesian neural networks (LBBNNs) further handle structural uncertainty and sparsify models by removing redundant weights. This article advances LBBNNs by enabling covariates to skip to any succeeding layer or be excluded, simplifying networks and clarifying input impacts on predictions. Ultimately, a linear model or even a constant can be found to be optimal for a specific problem at hand. Furthermore, the input-skip LBBNN approach reduces network density significantly compared to standard LBBNNs, achieving over 99% reduction for small networks and over 99.9% for larger ones, while still maintaining high predictive accuracy and uncertainty measurement. For example, on MNIST, we reached 97% accuracy and great calibration with just 935 weights, reaching state-of-the-art for compression of neural networks. Furthermore, the proposed method accurately identifies the true covariates and adjusts for system non-linearity. The main contribution is the introduction of active paths, enhancing directly designed global and local explanations within the LBBNN framework, that have theoretical guarantees and do not require post hoc external tools for explanations.
On the stochastics of human and artificial creativity
Sæbø, Solve, Brovold, Helge
What constitutes human creativity, and is it possible for computers to exhibit genuine creativity? We argue that achieving human-level intelligence in computers, or so-called Artificial General Intelligence, necessitates attaining also human-level creativity. We contribute to this discussion by developing a statistical representation of human creativity, incorporating prior insights from stochastic theory, psychology, philosophy, neuroscience, and chaos theory. This highlights the stochastic nature of the human creative process, which includes both a bias guided, random proposal step, and an evaluation step depending on a flexible or transformable bias structure. The acquired representation of human creativity is subsequently used to assess the creativity levels of various contemporary AI systems. Our analysis includes modern AI algorithms such as reinforcement learning, diffusion models, and large language models, addressing to what extent they measure up to human level creativity. We conclude that these technologies currently lack the capability for autonomous creative action at a human level.