Russell, Stephen
Reports on the 2018 AAAI Spring Symposium Series
Amato, Christopher (Northeastern University) | Ammar, Haitham Bou (PROWLER.io) | Churchill, Elizabeth (Google) | Karpas, Erez (Technion - Israel Institute of Technology) | Kido, Takashi (Stanford University) | Kuniavsky, Mike (Parc) | Lawless, W. F. (Paine College) | Rossi, Francesca (IBM T. J. Watson Research Center and University of Padova) | Oliehoek, Frans A. (TU Delft) | Russell, Stephen (US Army Research Laboratory) | Takadama, Keiki (University of Electro-Communications) | Srivastava, Siddharth (Arizona State University) | Tuyls, Karl (Google DeepMind) | Allen, Philip Van (Art Center College of Design) | Venable, K. Brent (Tulane University and IHMC) | Vrancx, Peter (PROWLER.io) | Zhang, Shiqi (Cleveland State University)
The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University’s Department of Computer Science, presented the 2018 Spring Symposium Series, held Monday through Wednesday, March 26–28, 2018, on the campus of Stanford University. The seven symposia held were AI and Society: Ethics, Safety and Trustworthiness in Intelligent Agents; Artificial Intelligence for the Internet of Everything; Beyond Machine Intelligence: Understanding Cognitive Bias and Humanity for Well-Being AI; Data Efficient Reinforcement Learning; The Design of the User Experience for Artificial Intelligence (the UX of AI); Integrated Representation, Reasoning, and Learning in Robotics; Learning, Inference, and Control of Multi-Agent Systems. This report, compiled from organizers of the symposia, summarizes the research of five of the symposia that took place.
On Stream-Centric Learning for Internet of Battlefield Things
Jalaian, Brian A. (United States Army Research Laboratory) | Koppel, Alec (United States Army Research Laboratory) | Harrison, Andre (U.S. Army Research Laboratory) | Michaelis, James (U.S. Army Research Laboratory) | Russell, Stephen (U.S. Army Research Laboratory)
Internet of Things (IoT) technologies have made considerable recent advances in commercial applications, prompting new research on their use in military applications. Towards the development of an Internet of Battlefield Things (IoBT), capable of leveraging mixed commercial and military technologies, several unique challenges of the tactical environment present themselves. These challenges include development of methods for: (I) quickly gathering training data reflecting unforeseen learning/classification tasks; (II) incrementally learning over real-time data streams; (III) management of limited network bandwidth and connectivity between IoBT assets in data gathering and classification tasks. This paper provides a survey over classical and modern statistical learning theory, and how numerical optimization can be used to solve corresponding mathematical problems. The objective of this paper is to encourage the IoT and machine learning research communities to revisit the underlying mathematical underpinnings of stream-based learning, as applicable to IoBT-based systems.
Human Information Interaction, Artificial Intelligence, and Errors
Russell, Stephen (Army Research Laboratory) | Moskowitz, Ira S. (The Naval Research Laboratory)
In a time of pervasive and increasingly transparent computing, humans will interact with information objects and less and less with the computing devices that define them. Artificial Intelligence (AI) will be the proxy for humans’ interaction with information. Because interaction creates opportunities for error, the trend towards AI-augmented human information interaction (HII) will mandate an increased emphasis on cognition-oriented information science research and new ways of thinking about errors and error handling. A review of HII and its relationship to AI is presented, with a focus on errors in this context.