Goto

Collaborating Authors

 Rubinstein, Benjamin I. P.


DDAD: A Two-pronged Adversarial Defense Based on Distributional Discrepancy

arXiv.org Artificial Intelligence

Statistical adversarial data detection (SADD) detects whether an upcoming batch contains adversarial examples (AEs) by measuring the distributional discrepancies between clean examples (CEs) and AEs. In this paper, we reveal the potential strength of SADD-based methods by theoretically showing that minimizing distributional discrepancy can help reduce the expected loss on AEs. Nevertheless, despite these advantages, SADD-based methods have a potential limitation: they discard inputs that are detected as AEs, leading to the loss of clean information within those inputs. To address this limitation, we propose a two-pronged adversarial defense method, named Distributional-Discrepancy-based Adversarial Defense (DDAD). In the training phase, DDAD first optimizes the test power of the maximum mean discrepancy (MMD) to derive MMD-OPT, and then trains a denoiser by minimizing the MMD-OPT between CEs and AEs. In the inference phase, DDAD first leverages MMD-OPT to differentiate CEs and AEs, and then applies a two-pronged process: (1) directly feeding the detected CEs into the classifier, and (2) removing noise from the detected AEs by the distributional-discrepancy-based denoiser. Extensive experiments show that DDAD outperforms current state-of-the-art (SOTA) defense methods by notably improving clean and robust accuracy on CIFAR-10 and ImageNet-1K against adaptive white-box attacks.


Adaptive Data Analysis for Growing Data

arXiv.org Machine Learning

Reuse of data in adaptive workflows poses challenges regarding overfitting and the statistical validity of results. Previous work has demonstrated that interacting with data via differentially private algorithms can mitigate overfitting, achieving worst-case generalization guarantees with asymptotically optimal data requirements. However, such past work assumes data is static and cannot accommodate situations where data grows over time. In this paper we address this gap, presenting the first generalization bounds for adaptive analysis in the dynamic data setting. We allow the analyst to adaptively schedule their queries conditioned on the current size of the data, in addition to previous queries and responses. We also incorporate time-varying empirical accuracy bounds and mechanisms, allowing for tighter guarantees as data accumulates. In a batched query setting, the asymptotic data requirements of our bound grows with the square-root of the number of adaptive queries, matching prior works' improvement over data splitting for the static setting. We instantiate our bound for statistical queries with the clipped Gaussian mechanism, where it empirically outperforms baselines composed from static bounds.


SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks

arXiv.org Artificial Intelligence

Modern NLP models are often trained on public datasets drawn from diverse sources, rendering them vulnerable to data poisoning attacks. These attacks can manipulate the model's behavior in ways engineered by the attacker. One such tactic involves the implantation of backdoors, achieved by poisoning specific training instances with a textual trigger and a target class label. Several strategies have been proposed to mitigate the risks associated with backdoor attacks by identifying and removing suspected poisoned examples. However, we observe that these strategies fail to offer effective protection against several advanced backdoor attacks. To remedy this deficiency, we propose a novel defensive mechanism that first exploits training dynamics to identify poisoned samples with high precision, followed by a label propagation step to improve recall and thus remove the majority of poisoned instances. Compared with recent advanced defense methods, our method considerably reduces the success rates of several backdoor attacks while maintaining high classification accuracy on clean test sets.


RS-Reg: Probabilistic and Robust Certified Regression Through Randomized Smoothing

arXiv.org Artificial Intelligence

Randomized smoothing has shown promising certified robustness against adversaries in classification tasks. Despite such success with only zeroth-order access to base models, randomized smoothing has not been extended to a general form of regression. By defining robustness in regression tasks flexibly through probabilities, we demonstrate how to establish upper bounds on input data point perturbation (using the $\ell_2$ norm) for a user-specified probability of observing valid outputs. Furthermore, we showcase the asymptotic property of a basic averaging function in scenarios where the regression model operates without any constraint. We then derive a certified upper bound of the input perturbations when dealing with a family of regression models where the outputs are bounded. Our simulations verify the validity of the theoretical results and reveal the advantages and limitations of simple smoothing functions, i.e., averaging, in regression tasks. The code is publicly available at \url{https://github.com/arekavandi/Certified_Robust_Regression}.


Transferring Troubles: Cross-Lingual Transferability of Backdoor Attacks in LLMs with Instruction Tuning

arXiv.org Artificial Intelligence

The implications of backdoor attacks on English-centric large language models (LLMs) have been widely examined - such attacks can be achieved by embedding malicious behaviors during training and activated under specific conditions that trigger malicious outputs. However, the impact of backdoor attacks on multilingual models remains under-explored. Our research focuses on cross-lingual backdoor attacks against multilingual LLMs, particularly investigating how poisoning the instruction-tuning data in one or two languages can affect the outputs in languages whose instruction-tuning data was not poisoned. Despite its simplicity, our empirical analysis reveals that our method exhibits remarkable efficacy in models like mT5, BLOOM, and GPT-3.5-turbo, with high attack success rates, surpassing 95% in several languages across various scenarios. Alarmingly, our findings also indicate that larger models show increased susceptibility to transferable cross-lingual backdoor attacks, which also applies to LLMs predominantly pre-trained on English data, such as Llama2, Llama3, and Gemma. Moreover, our experiments show that triggers can still work even after paraphrasing, and the backdoor mechanism proves highly effective in cross-lingual response settings across 25 languages, achieving an average attack success rate of 50%. Our study aims to highlight the vulnerabilities and significant security risks present in current multilingual LLMs, underscoring the emergent need for targeted security measures.


Backdoor Attack on Multilingual Machine Translation

arXiv.org Artificial Intelligence

While multilingual machine translation (MNMT) systems hold substantial promise, they also have security vulnerabilities. Our research highlights that MNMT systems can be susceptible to a particularly devious style of backdoor attack, whereby an attacker injects poisoned data into a low-resource language pair to cause malicious translations in other languages, including high-resource languages. Our experimental results reveal that injecting less than 0.01% poisoned data into a low-resource language pair can achieve an average 20% attack success rate in attacking high-resource language pairs. This type of attack is of particular concern, given the larger attack surface of languages inherent to low-resource settings. Our aim is to bring attention to these vulnerabilities within MNMT systems with the hope of encouraging the community to address security concerns in machine translation, especially in the context of low-resource languages.


RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion

arXiv.org Machine Learning

Randomized smoothing is a leading approach for constructing classifiers that are certifiably robust against adversarial examples. Existing work on randomized smoothing has focused on classifiers with continuous inputs, such as images, where $\ell_p$-norm bounded adversaries are commonly studied. However, there has been limited work for classifiers with discrete or variable-size inputs, such as for source code, which require different threat models and smoothing mechanisms. In this work, we adapt randomized smoothing for discrete sequence classifiers to provide certified robustness against edit distance-bounded adversaries. Our proposed smoothing mechanism randomized deletion (RS-Del) applies random deletion edits, which are (perhaps surprisingly) sufficient to confer robustness against adversarial deletion, insertion and substitution edits. Our proof of certification deviates from the established Neyman-Pearson approach, which is intractable in our setting, and is instead organized around longest common subsequences. We present a case study on malware detection--a binary classification problem on byte sequences where classifier evasion is a well-established threat model. When applied to the popular MalConv malware detection model, our smoothing mechanism RS-Del achieves a certified accuracy of 91% at an edit distance radius of 128 bytes.


Enhancing the Antidote: Improved Pointwise Certifications against Poisoning Attacks

arXiv.org Artificial Intelligence

Poisoning attacks can disproportionately influence model behaviour by making small changes to the training corpus. While defences against specific poisoning attacks do exist, they in general do not provide any guarantees, leaving them potentially countered by novel attacks. In contrast, by examining worst-case behaviours Certified Defences make it possible to provide guarantees of the robustness of a sample against adversarial attacks modifying a finite number of training samples, known as pointwise certification. We achieve this by exploiting both Differential Privacy and the Sampled Gaussian Mechanism to ensure the invariance of prediction for each testing instance against finite numbers of poisoned examples. In doing so, our model provides guarantees of adversarial robustness that are more than twice as large as those provided by prior certifications.


The Certification Paradox: Certifications Admit Better Attacks

arXiv.org Artificial Intelligence

In guaranteeing that no adversarial examples exist within a bounded region, certification mechanisms play an important role in demonstrating the robustness of neural networks. In this work we ask: Could certifications have any unintended consequences, through exposing additional information about certified models? We answer this question in the affirmative, demonstrating that certifications not only measure model robustness but also present a new attack surface. We propose \emph{Certification Aware Attacks}, that produce smaller adversarial perturbations more than twice as frequently as any prior approach, when launched against certified models. Our attacks achieve an up to $34\%$ reduction in the median perturbation norm (comparing target and attack instances), while requiring $90 \%$ less computational time than approaches like PGD. That our attacks achieve such significant reductions in perturbation size and computational cost highlights an apparent paradox in deploying certification mechanisms. We end the paper with a discussion of how these risks could potentially be mitigated.


Testing the Robustness of Learned Index Structures

arXiv.org Artificial Intelligence

While early empirical evidence has supported the case for learned index structures as having favourable average-case performance, little is known about their worst-case performance. By contrast, classical structures are known to achieve optimal worst-case behaviour. This work evaluates the robustness of learned index structures in the presence of adversarial workloads. To simulate adversarial workloads, we carry out a data poisoning attack on linear regression models that manipulates the cumulative distribution function (CDF) on which the learned index model is trained. The attack deteriorates the fit of the underlying ML model by injecting a set of poisoning keys into the training dataset, which leads to an increase in the prediction error of the model and thus deteriorates the overall performance of the learned index structure. We assess the performance of various regression methods and the learned index implementations ALEX and PGM-Index. We show that learned index structures can suffer from a significant performance deterioration of up to 20% when evaluated on poisoned vs. non-poisoned datasets.