Goto

Collaborating Authors

 Rubin, Daniel


Exploring Image Augmentations for Siamese Representation Learning with Chest X-Rays

arXiv.org Artificial Intelligence

Image augmentations are quintessential for effective visual representation learning across self-supervised learning techniques. While augmentation strategies for natural imaging have been studied extensively, medical images are vastly different from their natural counterparts. Thus, it is unknown whether common augmentation strategies employed in Siamese representation learning generalize to medical images and to what extent. To address this challenge, in this study, we systematically assess the effect of various augmentations on the quality and robustness of the learned representations. We train and evaluate Siamese Networks for abnormality detection on chest X-Rays across three large datasets (MIMIC-CXR, CheXpert and VinDr-CXR). We investigate the efficacy of the learned representations through experiments involving linear probing, fine-tuning, zero-shot transfer, and data efficiency. Finally, we identify a set of augmentations that yield robust representations that generalize well to both out-of-distribution data and diseases, while outperforming supervised baselines using just zero-shot transfer and linear probes by up to 20%.


Towards trustworthy seizure onset detection using workflow notes

arXiv.org Artificial Intelligence

A major barrier to deploying healthcare AI models is their trustworthiness. One form of trustworthiness is a model's robustness across different subgroups: while existing models may exhibit expert-level performance on aggregate metrics, they often rely on non-causal features, leading to errors in hidden subgroups. To take a step closer towards trustworthy seizure onset detection from EEG, we propose to leverage annotations that are produced by healthcare personnel in routine clinical workflows -- which we refer to as workflow notes -- that include multiple event descriptions beyond seizures. Using workflow notes, we first show that by scaling training data to an unprecedented level of 68,920 EEG hours, seizure onset detection performance significantly improves (+12.3 AUROC points) compared to relying on smaller training sets with expensive manual gold-standard labels. Second, we reveal that our binary seizure onset detection model underperforms on clinically relevant subgroups (e.g., up to a margin of 6.5 AUROC points between pediatrics and adults), while having significantly higher false positives on EEG clips showing non-epileptiform abnormalities compared to any EEG clip (+19 FPR points). To improve model robustness to hidden subgroups, we train a multilabel model that classifies 26 attributes other than seizures, such as spikes, slowing, and movement artifacts. We find that our multilabel model significantly improves overall seizure onset detection performance (+5.9 AUROC points) while greatly improving performance among subgroups (up to +8.3 AUROC points), and decreases false positives on non-epileptiform abnormalities by 8 FPR points. Finally, we propose a clinical utility metric based on false positives per 24 EEG hours and find that our multilabel model improves this clinical utility metric by a factor of 2x across different clinical settings.


Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging

arXiv.org Artificial Intelligence

The collection and curation of large-scale medical datasets from multiple institutions is essential for training accurate deep learning models, but privacy concerns often hinder data sharing. Federated learning (FL) is a promising solution that enables privacy-preserving collaborative learning among different institutions, but it generally suffers from performance deterioration due to heterogeneous data distributions and a lack of quality labeled data. In this paper, we present a robust and label-efficient self-supervised FL framework for medical image analysis. Our method introduces a novel Transformer-based self-supervised pre-training paradigm that pre-trains models directly on decentralized target task datasets using masked image modeling, to facilitate more robust representation learning on heterogeneous data and effective knowledge transfer to downstream models. Extensive empirical results on simulated and real-world medical imaging non-IID federated datasets show that masked image modeling with Transformers significantly improves the robustness of models against various degrees of data heterogeneity. Notably, under severe data heterogeneity, our method, without relying on any additional pre-training data, achieves an improvement of 5.06%, 1.53% and 4.58% in test accuracy on retinal, dermatology and chest X-ray classification compared to the supervised baseline with ImageNet pre-training. In addition, we show that our federated self-supervised pre-training methods yield models that generalize better to out-of-distribution data and perform more effectively when fine-tuning with limited labeled data, compared to existing FL algorithms. The code is available at https://github.com/rui-yan/SSL-FL.


Multimodal spatiotemporal graph neural networks for improved prediction of 30-day all-cause hospital readmission

arXiv.org Artificial Intelligence

Measures to predict 30-day readmission are considered an important quality factor for hospitals as accurate predictions can reduce the overall cost of care by identifying high risk patients before they are discharged. While recent deep learning-based studies have shown promising empirical results on readmission prediction, several limitations exist that may hinder widespread clinical utility, such as (a) only patients with certain conditions are considered, (b) existing approaches do not leverage data temporality, (c) individual admissions are assumed independent of each other, which is unrealistic, (d) prior studies are usually limited to single source of data and single center data. To address these limitations, we propose a multimodal, modality-agnostic spatiotemporal graph neural network (MM-STGNN) for prediction of 30-day all-cause hospital readmission that fuses multimodal in-patient longitudinal data. By training and evaluating our methods using longitudinal chest radiographs and electronic health records from two independent centers, we demonstrate that MM-STGNN achieves AUROC of 0.79 on both primary and external datasets. Furthermore, MM-STGNN significantly outperforms the current clinical reference standard, LACE+ score (AUROC=0.61), on the primary dataset. For subset populations of patients with heart and vascular disease, our model also outperforms baselines on predicting 30-day readmission (e.g., 3.7 point improvement in AUROC in patients with heart disease). Lastly, qualitative model interpretability analysis indicates that while patients' primary diagnoses were not explicitly used to train the model, node features crucial for model prediction directly reflect patients' primary diagnoses. Importantly, our MM-STGNN is agnostic to node feature modalities and could be utilized to integrate multimodal data for triaging patients in various downstream resource allocation tasks.


Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence

arXiv.org Artificial Intelligence

Title: Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence One sentence summary: An efficient and effective privacy-preserving AI framework is proposed for CT-based COVID-19 diagnosis, based on 9,573 CT scans of 3,336 patients, from 23 hospitals in China and the UK. Abstract Artificial intelligence (AI) provides a promising substitution for streamlining COVID-19 diagnoses. However, concerns surrounding security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable challenge for training a well-generalised model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution under a federated learning framework (FL) without data sharing. Here we show that our FL model outperformed all the local models by a large yield (test sensitivity /specificity in China: 0.973/0.951, in the UK: 0.730/0.942), We further evaluated the model on the hold-out (collected from another two hospitals leaving out the FL) and heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and analysed the trade-offs between the model performance and the communication costs in the federated training process. Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK. Collectively, our work advanced the prospects of utilising federated learning for privacy-preserving AI in digital health. MAIN TEXT Introduction As the gold standard for identifying COVID-19 carriers, reverse transcription-polymerase chain reaction (RT-PCR) is the primary diagnostic modality to detect viral nucleotide in specimens from cases with suspected infection. It has been reported that coronavirus carriers present certain radiological features in chest CTs, including ground-glass opacity, interlobular septal thickening, and consolidation, which can be exploited to identify COVID-19 cases.


Inferring Generative Model Structure with Static Analysis

Neural Information Processing Systems

Obtaining enough labeled data to robustly train complex discriminative models is a major bottleneck in the machine learning pipeline. A popular solution is combining multiple sources of weak supervision using generative models. The structure of these models affects the quality of the training labels, but is difficult to learn without any ground truth labels. We instead rely on weak supervision sources having some structure by virtue of being encoded programmatically. We present Coral, a paradigm that infers generative model structure by statically analyzing the code for these heuristics, thus significantly reducing the amount of data required to learn structure.


Cross-Modal Data Programming Enables Rapid Medical Machine Learning

arXiv.org Machine Learning

Department of Biomedical Data Science, Stanford University, Stanford, California, USA Labeling training datasets has become a key barrier to building medical machine learning models. One strategy is to generate training labels programmatically, for example by applying natural language processing pipelines to text reports associated with imaging studies. We propose cross-modal data programming, which generalizes this intuitive strategy in a theoretically-grounded way that enables simpler, clinician-driven input, reduces required labeling time, and improves with additional unlabeled data. In this approach, clinicians generate training labels for models defined over a target modality (e.g. The resulting technical challenge consists of estimating the accuracies and correlations of these rules; we extend a recent unsupervised generative modeling technique to handle this cross-modal setting in a provably consistent way. Across four applications in radiography, computed tomography, and electroencephalography, and using only several hours of clinician time, our approach matches or exceeds the efficacy of physician-months of hand-labeling with statistical significance, demonstrating a fundamentally faster and more flexible way of building machine learning models in medicine. In addition to being extremely costly, these training sets are inflexible: given a new classification schema, imaging system, patient population, or other change in the data distribution or modeling task, the training set generally needs to be relabeled from scratch. One manifestation of this shift in the broader machine learning community is the increasing use of weak supervision approaches, where training data is labeled in noisier, higher-level, often programmatic ways, rather than manually by experts. We broadly characterize these methods as cross-modal weak supervision approaches, in which the strategy is to programmatically extract labels from an auxiliary modality--e.g. the unstructured text reports accompanying an imaging study--which are then used as training labels for a model defined over the target modality, e.g. These methods follow the intuition that programmatically extracting labels from the auxiliary modality can be far faster and easier than hand-labeling or deriving labels from the target modality directly.


TVAE: Triplet-Based Variational Autoencoder using Metric Learning

arXiv.org Machine Learning

Deep metric learning has been demonstrated to be highly effective in learning semantic representation and encoding information that can be used to measure data similarity, by relying on the embedding learned from metric learning. At the same time, variational autoencoder (VAE) has widely been used to approximate inference and proved to have a good performance for directed probabilistic models. However, for traditional VAE, the data label or feature information are intractable. Similarly, traditional representation learning approaches fail to represent many salient aspects of the data. In this project, we propose a novel integrated framework to learn latent embedding in VAE by incorporating deep metric learning. The features are learned by optimizing a triplet loss on the mean vectors of VAE in conjunction with standard evidence lower bound (ELBO) of VAE. This approach, which we call Triplet based Variational Autoencoder (TVAE), allows us to capture more fine-grained information in the latent embedding. Our model is tested on MNIST data set and achieves a high triplet accuracy of 95.60% while the traditional VAE (Kingma & Welling, 2013) achieves triplet accuracy of 75.08%.


Inferring Generative Model Structure with Static Analysis

Neural Information Processing Systems

Obtaining enough labeled data to robustly train complex discriminative models is a major bottleneck in the machine learning pipeline. A popular solution is combining multiple sources of weak supervision using generative models. The structure of these models affects the quality of the training labels, but is difficult to learn without any ground truth labels. We instead rely on weak supervision sources having some structure by virtue of being encoded programmatically. We present Coral, a paradigm that infers generative model structure by statically analyzing the code for these heuristics, thus significantly reducing the amount of data required to learn structure. We prove that Coral's sample complexity scales quasilinearly with the number of heuristics and number of relations identified, improving over the standard sample complexity, which is exponential in n for learning n-th degree relations. Empirically, Coral matches or outperforms traditional structure learning approaches by up to 3.81 F1 points. Using Coral to model dependencies instead of assuming independence results in better performance than a fully supervised model by 3.07 accuracy points when heuristics are used to label radiology data without ground truth labels.


A Hybrid Method for Distance Metric Learning

arXiv.org Machine Learning

We consider the problem of learning a measure of distance among vectors in a feature space and propose a hybrid method that simultaneously learns from similarity ratings assigned to pairs of vectors and class labels assigned to individual vectors. Our method is based on a generative model in which class labels can provide information that is not encoded in feature vectors but yet relates to perceived similarity between objects. Experiments with synthetic data as well as a real medical image retrieval problem demonstrate that leveraging class labels through use of our method improves retrieval performance significantly.