Goto

Collaborating Authors

 Roux, Christophe


Implicit Riemannian Optimism with Applications to Min-Max Problems

arXiv.org Artificial Intelligence

We introduce a Riemannian optimistic online learning algorithm for Hadamard manifolds based on inexact implicit updates. Unlike prior work, our method can handle in-manifold constraints, and matches the best known regret bounds in the Euclidean setting with no dependence on geometric constants, like the minimum curvature. Building on this, we develop algorithms for g-convex, g-concave smooth min-max problems on Hadamard manifolds. Notably, one method nearly matches the gradient oracle complexity of the lower bound for Euclidean problems, for the first time.


On the Byzantine-Resilience of Distillation-Based Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) algorithms using Knowledge Distillation (KD) have received increasing attention due to their favorable properties with respect to privacy, non-i.i.d. data and communication cost. These methods depart from transmitting model parameters and instead communicate information about a learning task by sharing predictions on a public dataset. In this work, we study the performance of such approaches in the byzantine setting, where a subset of the clients act in an adversarial manner aiming to disrupt the learning process. We show that KD-based FL algorithms are remarkably resilient and analyze how byzantine clients can influence the learning process. Based on these insights, we introduce two new byzantine attacks and demonstrate their ability to break existing byzantine-resilient methods. Additionally, we propose a novel defence method which enhances the byzantine resilience of KD-based FL algorithms. Finally, we provide a general framework to obfuscate attacks, making them significantly harder to detect, thereby improving their effectiveness. Our findings serve as an important building block in the analysis of byzantine FL, contributing through the development of new attacks and new defence mechanisms, further advancing the robustness of KD-based FL algorithms.


Accelerated Methods for Riemannian Min-Max Optimization Ensuring Bounded Geometric Penalties

arXiv.org Artificial Intelligence

To that aim we introduce new g-convex optimization results, of independent interest: we show global linear convergence for metric-projected Riemannian gradient descent and improve existing accelerated methods by reducing geometric constants. Additionally, we complete the analysis of two previous works applying to the Riemannian min-max case by removing an assumption about iterates staying in a pre-specified compact set.


Efficient Online-Bandit Strategies for Minimax Learning Problems

arXiv.org Machine Learning

Several learning problems involve solving min-max problems, e.g., empirical distributional robust learning or learning with non-standard aggregated losses. More specifically, these problems are convex-linear problems where the minimization is carried out over the model parameters $w\in\mathcal{W}$ and the maximization over the empirical distribution $p\in\mathcal{K}$ of the training set indexes, where $\mathcal{K}$ is the simplex or a subset of it. To design efficient methods, we let an online learning algorithm play against a (combinatorial) bandit algorithm. We argue that the efficiency of such approaches critically depends on the structure of $\mathcal{K}$ and propose two properties of $\mathcal{K}$ that facilitate designing efficient algorithms. We focus on a specific family of sets $\mathcal{S}_{n,k}$ encompassing various learning applications and provide high-probability convergence guarantees to the minimax values.