Goto

Collaborating Authors

 Roth, Stefan


Beyond Accuracy: What Matters in Designing Well-Behaved Models?

arXiv.org Artificial Intelligence

Deep learning has become an essential part of computer vision, with deep neural networks (DNNs) excelling in predictive performance. However, they often fall short in other critical quality dimensions, such as robustness, calibration, or fairness. While existing studies have focused on a subset of these quality dimensions, none have explored a more general form of "well-behavedness" of DNNs. With this work, we address this gap by simultaneously studying nine different quality dimensions for image classification. Through a large-scale study, we provide a bird's-eye view by analyzing 326 backbone models and how different training paradigms and model architectures affect the quality dimensions. We reveal various new insights such that (i) vision-language models exhibit high fairness on ImageNet-1k classification and strong robustness against domain changes; (ii) self-supervised learning is an effective training paradigm to improve almost all considered quality dimensions; and (iii) the training dataset size is a major driver for most of the quality dimensions. We conclude our study by introducing the QUBA score (Quality Understanding Beyond Accuracy), a novel metric that ranks models across multiple dimensions of quality, enabling tailored recommendations based on specific user needs.


Benchmarking the Attribution Quality of Vision Models

arXiv.org Artificial Intelligence

Attribution maps are one of the most established tools to explain the functioning of computer vision models. They assign importance scores to input features, indicating how relevant each feature is for the prediction of a deep neural network. While much research has gone into proposing new attribution methods, their proper evaluation remains a difficult challenge. In this work, we propose a novel evaluation protocol that overcomes two fundamental limitations of the widely used incremental-deletion protocol, i.e., the out-of-domain issue and lacking inter-model comparisons. This allows us to evaluate 23 attribution methods and how eight different design choices of popular vision models affect their attribution quality. We find that intrinsically explainable models outperform standard models and that raw attribution values exhibit a higher attribution quality than what is known from previous work. Further, we show consistent changes in the attribution quality when varying the network design, indicating that some standard design choices promote attribution quality.


Adapters Strike Back

arXiv.org Artificial Intelligence

Adapters provide an efficient and lightweight mechanism for adapting trained transformer models to a variety of different tasks. However, they have often been found to be outperformed by other adaptation mechanisms, including low-rank adaptation. In this paper, we provide an in-depth study of adapters, their internal structure, as well as various implementation choices. We uncover pitfalls for using adapters and suggest a concrete, improved adapter architecture, called Adapter+, that not only outperforms previous adapter implementations but surpasses a number of other, more complex adaptation mechanisms in several challenging settings. Despite this, our suggested adapter is highly robust and, unlike previous work, requires little to no manual intervention when addressing a novel scenario. Adapter+ reaches state-of-the-art average accuracy on the VTAB benchmark, even without a per-task hyperparameter optimization.


Pixel State Value Network for Combined Prediction and Planning in Interactive Environments

arXiv.org Artificial Intelligence

Automated vehicles operating in urban environments have to reliably interact with other traffic participants. Planning algorithms often utilize separate prediction modules forecasting probabilistic, multi-modal, and interactive behaviors of objects. Designing prediction and planning as two separate modules introduces significant challenges, particularly due to the interdependence of these modules. This work proposes a deep learning methodology to combine prediction and planning. A conditional GAN with the U-Net architecture is trained to predict two high-resolution image sequences. The sequences represent explicit motion predictions, mainly used to train context understanding, and pixel state values suitable for planning encoding kinematic reachability, object dynamics, safety, and driving comfort. The model can be trained offline on target images rendered by a sampling-based model-predictive planner, leveraging real-world driving data. Our results demonstrate intuitive behavior in complex situations, such as lane changes amidst conflicting objectives.


Vision Relation Transformer for Unbiased Scene Graph Generation

arXiv.org Artificial Intelligence

Recent years have seen a growing interest in Scene Graph Generation (SGG), a comprehensive visual scene understanding task that aims to predict entity relationships using a relation encoder-decoder pipeline stacked on top of an object encoder-decoder backbone. Unfortunately, current SGG methods suffer from an information loss regarding the entities local-level cues during the relation encoding process. To mitigate this, we introduce the Vision rElation TransfOrmer (VETO), consisting of a novel local-level entity relation encoder. We further observe that many existing SGG methods claim to be unbiased, but are still biased towards either head or tail classes. To overcome this bias, we introduce a Mutually Exclusive ExperT (MEET) learning strategy that captures important relation features without bias towards head or tail classes. Experimental results on the VG and GQA datasets demonstrate that VETO + MEET boosts the predictive performance by up to 47 percentage over the state of the art while being 10 times smaller.


FunnyBirds: A Synthetic Vision Dataset for a Part-Based Analysis of Explainable AI Methods

arXiv.org Artificial Intelligence

The field of explainable artificial intelligence (XAI) aims to uncover the inner workings of complex deep neural models. While being crucial for safety-critical domains, XAI inherently lacks ground-truth explanations, making its automatic evaluation an unsolved problem. We address this challenge by proposing a novel synthetic vision dataset, named FunnyBirds, and accompanying automatic evaluation protocols. Our dataset allows performing semantically meaningful image interventions, e.g., removing individual object parts, which has three important implications. First, it enables analyzing explanations on a part level, which is closer to human comprehension than existing methods that evaluate on a pixel level. Second, by comparing the model output for inputs with removed parts, we can estimate ground-truth part importances that should be reflected in the explanations. Third, by mapping individual explanations into a common space of part importances, we can analyze a variety of different explanation types in a single common framework. Using our tools, we report results for 24 different combinations of neural models and XAI methods, demonstrating the strengths and weaknesses of the assessed methods in a fully automatic and systematic manner.


Content-Adaptive Downsampling in Convolutional Neural Networks

arXiv.org Artificial Intelligence

Many convolutional neural networks (CNNs) rely on progressive downsampling of their feature maps to increase the network's receptive field and decrease computational cost. However, this comes at the price of losing granularity in the feature maps, limiting the ability to correctly understand images or recover fine detail in dense prediction tasks. To address this, common practice is to replace the last few downsampling operations in a CNN with dilated convolutions, allowing to retain the feature map resolution without reducing the receptive field, albeit increasing the computational cost. This allows to trade off predictive performance against cost, depending on the output feature resolution. By either regularly downsampling or not downsampling the entire feature map, existing work implicitly treats all regions of the input image and subsequent feature maps as equally important, which generally does not hold. We propose an adaptive downsampling scheme that generalizes the above idea by allowing to process informative regions at a higher resolution than less informative ones. In a variety of experiments, we demonstrate the versatility of our adaptive downsampling strategy and empirically show that it improves the cost-accuracy trade-off of various established CNNs.


Planning on the fast lane: Learning to interact using attention mechanisms in path integral inverse reinforcement learning

arXiv.org Artificial Intelligence

General-purpose trajectory planning algorithms for automated driving utilize complex reward functions to perform a combined optimization of strategic, behavioral, and kinematic features. The specification and tuning of a single reward function is a tedious task and does not generalize over a large set of traffic situations. Deep learning approaches based on path integral inverse reinforcement learning have been successfully applied to predict local situation-dependent reward functions using features of a set of sampled driving policies. Sample-based trajectory planning algorithms are able to approximate a spatio-temporal subspace of feasible driving policies that can be used to encode the context of a situation. However, the interaction with dynamic objects requires an extended planning horizon, which depends on sequential context modeling. In this work, we are concerned with the sequential reward prediction over an extended time horizon. We present a neural network architecture that uses a policy attention mechanism to generate a low-dimensional context vector by concentrating on trajectories with a human-like driving style. Apart from this, we propose a temporal attention mechanism to identify context switches and allow for stable adaptation of rewards. We evaluate our results on complex simulated driving situations, including other moving vehicles. Our evaluation shows that our policy attention mechanism learns to focus on collision-free policies in the configuration space. Furthermore, the temporal attention mechanism learns persistent interaction with other vehicles over an extended planning horizon.


Driving Style Encoder: Situational Reward Adaptation for General-Purpose Planning in Automated Driving

arXiv.org Artificial Intelligence

General-purpose planning algorithms for automated driving combine mission, behavior, and local motion planning. Such planning algorithms map features of the environment and driving kinematics into complex reward functions. To achieve this, planning experts often rely on linear reward functions. The specification and tuning of these reward functions is a tedious process and requires significant experience. Moreover, a manually designed linear reward function does not generalize across different driving situations. In this work, we propose a deep learning approach based on inverse reinforcement learning that generates situation-dependent reward functions. Our neural network provides a mapping between features and actions of sampled driving policies of a model-predictive control-based planner and predicts reward functions for upcoming planning cycles. In our evaluation, we compare the driving style of reward functions predicted by our deep network against clustered and linear reward functions. Our proposed deep learning approach outperforms clustered linear reward functions and is at par with linear reward functions with a-priori knowledge about the situation.


Driving with Style: Inverse Reinforcement Learning in General-Purpose Planning for Automated Driving

arXiv.org Artificial Intelligence

Behavior and motion planning play an important role in automated driving. Traditionally, behavior planners instruct local motion planners with predefined behaviors. Due to the high scene complexity in urban environments, unpredictable situations may occur in which behavior planners fail to match predefined behavior templates. Recently, general-purpose planners have been introduced, combining behavior and local motion planning. These general-purpose planners allow behavior-aware motion planning given a single reward function. However, two challenges arise: First, this function has to map a complex feature space into rewards. Second, the reward function has to be manually tuned by an expert. Manually tuning this reward function becomes a tedious task. In this paper, we propose an approach that relies on human driving demonstrations to automatically tune reward functions. This study offers important insights into the driving style optimization of general-purpose planners with maximum entropy inverse reinforcement learning. We evaluate our approach based on the expected value difference between learned and demonstrated policies. Furthermore, we compare the similarity of human driven trajectories with optimal policies of our planner under learned and expert-tuned reward functions. Our experiments show that we are able to learn reward functions exceeding the level of manual expert tuning without prior domain knowledge.