Goto

Collaborating Authors

 Ross, Alexis


Language Modeling with Editable External Knowledge

arXiv.org Artificial Intelligence

When the world changes, so does the text that humans write about it. How do we build language models that can be easily updated to reflect these changes? One popular approach is retrieval-augmented generation, in which new documents are inserted into a knowledge base and retrieved during prediction for downstream tasks. Most prior work on these systems have focused on improving behavior during prediction through better retrieval or reasoning. This paper introduces ERASE, which instead improves model behavior when new documents are acquired, by incrementally deleting or rewriting other entries in the knowledge base each time a document is added. In two new benchmark datasets evaluating models' ability to answer questions about a stream of news articles or conversations, ERASE improves accuracy relative to conventional retrieval-augmented generation by 7-13% (Mixtral-8x7B) and 6-10% (Llama-3-8B) absolute. Code and data are available at https://github.com/belindal/ERASE


Toward In-Context Teaching: Adapting Examples to Students' Misconceptions

arXiv.org Artificial Intelligence

When a teacher provides examples for a student to study, these examples must be informative, enabling a student to progress from their current state toward a target concept or skill. Good teachers must therefore simultaneously infer what students already know and adapt their teaching to students' changing state of knowledge. There is increasing interest in using computational models, particularly large language models, as pedagogical tools. As students, language models in particular have shown a remarkable ability to adapt to new tasks given small numbers of examples. But how effectively can these models adapt as teachers to students of different types? To study this question, we introduce a suite of models and evaluation methods we call AdapT. AdapT has two components: (1) a collection of simulated Bayesian student models that can be used for evaluation of automated teaching methods; (2) a platform for evaluation with human students, to characterize the real-world effectiveness of these methods. We additionally introduce (3) AToM, a new probabilistic model for adaptive teaching that jointly infers students' past beliefs and optimizes for the correctness of future beliefs. In evaluations of simulated students across three learning domains (fraction arithmetic, English morphology, function learning), AToM systematically outperforms LLM-based and standard Bayesian teaching models. In human experiments, both AToM and LLMs outperform non-adaptive random example selection. Our results highlight both the difficulty of the adaptive teaching task and the potential of learned adaptive models for solving it.


Learning Phonotactics from Linguistic Informants

arXiv.org Artificial Intelligence

We propose an interactive approach to language learning that utilizes linguistic acceptability judgments from an informant (a competent language user) to learn a grammar. Given a grammar formalism and a framework for synthesizing data, our model iteratively selects or synthesizes a data-point according to one of a range of information-theoretic policies, asks the informant for a binary judgment, and updates its own parameters in preparation for the next query. We demonstrate the effectiveness of our model in the domain of phonotactics, the rules governing what kinds of sound-sequences are acceptable in a language, and carry out two experiments, one with typologically-natural linguistic data and another with a range of procedurally-generated languages. We find that the information-theoretic policies that our model uses to select items to query the informant achieve sample efficiency comparable to, and sometimes greater than, fully supervised approaches.


Reasoning or Reciting? Exploring the Capabilities and Limitations of Language Models Through Counterfactual Tasks

arXiv.org Artificial Intelligence

The impressive performance of recent language models across a wide range of tasks suggests that they possess a degree of abstract reasoning skills. Are these skills general and transferable, or specialized to specific tasks seen during pretraining? To disentangle these effects, we propose an evaluation framework based on "counterfactual" task variants that deviate from the default assumptions underlying standard tasks. Across a suite of 11 tasks, we observe nontrivial performance on the counterfactual variants, but nevertheless find that performance substantially and consistently degrades compared to the default conditions. This suggests that while current LMs may possess abstract task-solving skills to a degree, they often also rely on narrow, non-transferable procedures for task-solving. These results motivate a more careful interpretation of language model performance that teases apart these aspects of behavior.


ARIES: A Corpus of Scientific Paper Edits Made in Response to Peer Reviews

arXiv.org Artificial Intelligence

Revising scientific papers based on peer feedback is a challenging task that requires not only deep scientific knowledge and reasoning, but also the ability to recognize the implicit requests in high-level feedback and to choose the best of many possible ways to update the manuscript in response. We introduce this task for large language models and release ARIES, a dataset of review comments and their corresponding paper edits, to enable training and evaluating models. We study two versions of the task: comment-edit alignment and edit generation, and evaluate several baselines, including GPT-4. We find that models struggle even to identify the edits that correspond to a comment, especially in cases where the comment is phrased in an indirect way or where the edit addresses the spirit of a comment but not the precise request. When tasked with generating edits, GPT-4 often succeeds in addressing comments on a surface level, but it rigidly follows the wording of the feedback rather than the underlying intent, and includes fewer technical details than human-written edits. We hope that our formalization, dataset, and analysis will form a foundation for future work in this area.


Inverse Scaling: When Bigger Isn't Better

arXiv.org Artificial Intelligence

Work on scaling laws has found that large language models (LMs) show predictable improvements to overall loss with increased scale (model size, training data, and compute). Here, we present evidence for the claim that LMs may show inverse scaling, or worse task performance with increased scale, e.g., due to flaws in the training objective and data. We present empirical evidence of inverse scaling on 11 datasets collected by running a public contest, the Inverse Scaling Prize, with a substantial prize pool. Through analysis of the datasets, along with other examples found in the literature, we identify four potential causes of inverse scaling: (i) preference to repeat memorized sequences over following in-context instructions, (ii) imitation of undesirable patterns in the training data, (iii) tasks containing an easy distractor task which LMs could focus on, rather than the harder real task, and (iv) correct but misleading few-shot demonstrations of the task. We release the winning datasets at https://inversescaling.com/data to allow for further investigation of inverse scaling. Our tasks have helped drive the discovery of U-shaped and inverted-U scaling trends, where an initial trend reverses, suggesting that scaling trends are less reliable at predicting the behavior of larger-scale models than previously understood. Overall, our results suggest that there are tasks for which increased model scale alone may not lead to progress, and that more careful thought needs to go into the data and objectives for training language models.


CREST: A Joint Framework for Rationalization and Counterfactual Text Generation

arXiv.org Artificial Intelligence

Selective rationales and counterfactual examples have emerged as two effective, complementary classes of interpretability methods for analyzing and training NLP models. However, prior work has not explored how these methods can be integrated to combine their complementary advantages. We overcome this limitation by introducing CREST (ContRastive Edits with Sparse raTionalization), a joint framework for selective rationalization and counterfactual text generation, and show that this framework leads to improvements in counterfactual quality, model robustness, and interpretability. First, CREST generates valid counterfactuals that are more natural than those produced by previous methods, and subsequently can be used for data augmentation at scale, reducing the need for human-generated examples. Second, we introduce a new loss function that leverages CREST counterfactuals to regularize selective rationales and show that this regularization improves both model robustness and rationale quality, compared to methods that do not leverage CREST counterfactuals. Our results demonstrate that CREST successfully bridges the gap between selective rationales and counterfactual examples, addressing the limitations of existing methods and providing a more comprehensive view of a model's predictions.


Explaining NLP Models via Minimal Contrastive Editing (MiCE)

arXiv.org Artificial Intelligence

Humans give contrastive explanations that explain why an observed event happened rather than some other counterfactual event (the contrast case). Despite the important role that contrastivity plays in how people generate and evaluate explanations, this property is largely missing from current methods for explaining NLP models. We present Minimal Contrastive Editing (MiCE), a method for generating contrastive explanations of model predictions in the form of edits to inputs that change model outputs to the contrast case. Our experiments across three tasks -- binary sentiment classification, topic classification, and multiple-choice question answering -- show that MiCE is able to produce edits that are not only contrastive, but also minimal and fluent, consistent with human contrastive edits. We demonstrate how MiCE edits can be used for two use cases in NLP system development -- uncovering dataset artifacts and debugging incorrect model predictions -- and thereby illustrate that generating contrastive explanations is a promising research direction for model interpretability.


Ensuring Actionable Recourse via Adversarial Training

arXiv.org Artificial Intelligence

As machine learning models are increasingly deployed in high-stakes domains such as legal and financial decision-making, there has been growing interest in post-hoc methods for generating counterfactual explanations. Such explanations provide individuals adversely impacted by predicted outcomes (e.g., an applicant denied a loan) with "recourse" ---i.e., a description of how they can change their features to obtain a positive outcome. We propose a novel algorithm that leverages adversarial training and PAC confidence sets to learn models that theoretically guarantee recourse to affected individuals with high probability without sacrificing accuracy. To the best of our knowledge, our approach is the first to learn models for which recourses are guaranteed with high probability. Extensive experimentation with real world datasets spanning various applications including recidivism prediction, bail outcomes, and lending demonstrate the efficacy of the proposed framework.