Goto

Collaborating Authors

 Rodriguez, Mikel


A Framework for Evaluating Emerging Cyberattack Capabilities of AI

arXiv.org Artificial Intelligence

As frontier models become more capable, the community has attempted to evaluate their ability to enable cyberattacks. Performing a comprehensive evaluation and prioritizing defenses are crucial tasks in preparing for AGI safely. However, current cyber evaluation efforts are ad-hoc, with no systematic reasoning about the various phases of attacks, and do not provide a steer on how to use targeted defenses. In this work, we propose a novel approach to AI cyber capability evaluation that (1) examines the end-to-end attack chain, (2) helps to identify gaps in the evaluation of AI threats, and (3) helps defenders prioritize targeted mitigations and conduct AI-enabled adversary emulation to support red teaming. To achieve these goals, we propose adapting existing cyberattack chain frameworks to AI systems. We analyze over 12,000 instances of real-world attempts to use AI in cyberattacks catalogued by Google's Threat Intelligence Group. Using this analysis, we curate a representative collection of seven cyberattack chain archetypes and conduct a bottleneck analysis to identify areas of potential AI-driven cost disruption. Our evaluation benchmark consists of 50 new challenges spanning different phases of cyberattacks. Based on this, we devise targeted cybersecurity model evaluations, report on the potential for AI to amplify offensive cyber capabilities across specific attack phases, and conclude with recommendations on prioritizing defenses. In all, we consider this to be the most comprehensive AI cyber risk evaluation framework published so far.


STAR: SocioTechnical Approach to Red Teaming Language Models

arXiv.org Artificial Intelligence

This research introduces STAR, a sociotechnical framework that improves on current best practices for red teaming safety of large language models. STAR makes two key contributions: it enhances steerability by generating parameterised instructions for human red teamers, leading to improved coverage of the risk surface. Parameterised instructions also provide more detailed insights into model failures at no increased cost. Second, STAR improves signal quality by matching demographics to assess harms for specific groups, resulting in more sensitive annotations. STAR further employs a novel step of arbitration to leverage diverse viewpoints and improve label reliability, treating disagreement not as noise but as a valuable contribution to signal quality.


Responsible Reporting for Frontier AI Development

arXiv.org Artificial Intelligence

Mitigating the risks from frontier AI systems requires up-to-date and reliable information about those systems. Organizations that develop and deploy frontier systems have significant access to such information. By reporting safety-critical information to actors in government, industry, and civil society, these organizations could improve visibility into new and emerging risks posed by frontier systems. Equipped with this information, developers could make better informed decisions on risk management, while policymakers could design more targeted and robust regulatory infrastructure. We outline the key features of responsible reporting and propose mechanisms for implementing them in practice. Evaluate current models for novel risks (including risks discovered by other organizations) Update model safeguards and risk mitigations Developer Other developers (e.g., revise scaling policy, security practices) Documents and Evaluates information Consult with domain experts in government reports safety and decides on (e.g., experts in national security, public health) information response plan Solicit additional information from developer Government actor (e.g., design decisions, organizational processes) Request or conduct further safety evaluations (incl. in collaboration with independent auditors) Domain experts in


Gemini: A Family of Highly Capable Multimodal Models

arXiv.org Artificial Intelligence

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.


Adversarial Machine Learning and Cybersecurity: Risks, Challenges, and Legal Implications

arXiv.org Artificial Intelligence

In July 2022, the Center for Security and Emerging Technology (CSET) at Georgetown University and the Program on Geopolitics, Technology, and Governance at the Stanford Cyber Policy Center convened a workshop of experts to examine the relationship between vulnerabilities in artificial intelligence systems and more traditional types of software vulnerabilities. Topics discussed included the extent to which AI vulnerabilities can be handled under standard cybersecurity processes, the barriers currently preventing the accurate sharing of information about AI vulnerabilities, legal issues associated with adversarial attacks on AI systems, and potential areas where government support could improve AI vulnerability management and mitigation. Attendees at the workshop included industry representatives in both cybersecurity and AI red-teaming roles; academics with experience conducting adversarial machine learning research; legal specialists in cybersecurity regulation, AI liability, and computer-related criminal law; and government representatives with significant AI oversight responsibilities. This report is meant to accomplish two things. First, it provides a high-level discussion of AI vulnerabilities, including the ways in which they are disanalogous to other types of vulnerabilities, and the current state of affairs regarding information sharing and legal oversight of AI vulnerabilities. Second, it attempts to articulate broad recommendations as endorsed by the majority of participants at the workshop. These recommendations, categorized under four high-level topics, are as follows: 1. Topic: Extending Traditional Cybersecurity for AI Vulnerabilities 1.1. Recommendation: Organizations building or deploying AI models should use a risk management framework that addresses security throughout the AI system life cycle.