Plotting

 Rinaldo, Alessandro


Denoising and change point localisation in piecewise-constant high-dimensional regression coefficients

arXiv.org Machine Learning

We study the theoretical properties of the fused lasso procedure originally proposed by \cite{tibshirani2005sparsity} in the context of a linear regression model in which the regression coefficient are totally ordered and assumed to be sparse and piecewise constant. Despite its popularity, to the best of our knowledge, estimation error bounds in high-dimensional settings have only been obtained for the simple case in which the design matrix is the identity matrix. We formulate a novel restricted isometry condition on the design matrix that is tailored to the fused lasso estimator and derive estimation bounds for both the constrained version of the fused lasso assuming dense coefficients and for its penalised version. We observe that the estimation error can be dominated by either the lasso or the fused lasso rate, depending on whether the number of non-zero coefficient is larger than the number of piece-wise constant segments. Finally, we devise a post-processing procedure to recover the piecewise-constant pattern of the coefficients. Extensive numerical experiments support our theoretical findings.


The Performance of the MLE in the Bradley-Terry-Luce Model in $\ell_{\infty}$-Loss and under General Graph Topologies

arXiv.org Machine Learning

The Bradley-Terry-Luce (BTL) model is a popular statistical approach for estimating the global ranking of a collection of items of interest using pairwise comparisons. To ensure accurate ranking, it is essential to obtain precise estimates of the model parameters in the $\ell_{\infty}$-loss. The difficulty of this task depends crucially on the topology of the pairwise comparison graph over the given items. However, beyond very few well-studied cases, such as the complete and Erd\"os-R\'enyi comparison graphs, little is known about the performance of the maximum likelihood estimator (MLE) of the BTL model parameters in the $\ell_{\infty}$-loss under more general graph topologies. In this paper, we derive novel, general upper bounds on the $\ell_{\infty}$ estimation error of the BTL MLE that depend explicitly on the algebraic connectivity of the comparison graph, the maximal performance gap across items and the sample complexity. We demonstrate that the derived bounds perform well and in some cases are sharper compared to known results obtained using different loss functions and more restricted assumptions and graph topologies. We further provide minimax lower bounds under $\ell_{\infty}$-error that nearly match the upper bounds over a class of sufficiently regular graph topologies. Finally, we study the implications of our bounds for efficient tournament design. We illustrate and discuss our findings through various examples and simulations.


Lattice partition recovery with dyadic CART

arXiv.org Machine Learning

We study piece-wise constant signals corrupted by additive Gaussian noise over a $d$-dimensional lattice. Data of this form naturally arise in a host of applications, and the tasks of signal detection or testing, de-noising and estimation have been studied extensively in the statistical and signal processing literature. In this paper we consider instead the problem of partition recovery, i.e.~of estimating the partition of the lattice induced by the constancy regions of the unknown signal, using the computationally-efficient dyadic classification and regression tree (DCART) methodology proposed by \citep{donoho1997cart}. We prove that, under appropriate regularity conditions on the shape of the partition elements, a DCART-based procedure consistently estimates the underlying partition at a rate of order $\sigma^2 k^* \log (N)/\kappa^2$, where $k^*$ is the minimal number of rectangular sub-graphs obtained using recursive dyadic partitions supporting the signal partition, $\sigma^2$ is the noise variance, $\kappa$ is the minimal magnitude of the signal difference among contiguous elements of the partition and $N$ is the size of the lattice. Furthermore, under stronger assumptions, our method attains a sharper estimation error of order $\sigma^2\log(N)/\kappa^2$, independent of $ k^*$, which we show to be minimax rate optimal. Our theoretical guarantees further extend to the partition estimator based on the optimal regression tree estimator (ORT) of \cite{chatterjee2019adaptive} and to the one obtained through an NP-hard exhaustive search method. We corroborate our theoretical findings and the effectiveness of DCART for partition recovery in simulations.


Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection

arXiv.org Machine Learning

Nearest-neighbor (NN) procedures are well studied and widely used in both supervised and unsupervised learning problems. In this paper we are concerned with investigating the performance of NN-based methods for anomaly detection. We first show through extensive simulations that NN methods compare favorably to some of the other state-of-the-art algorithms for anomaly detection based on a set of benchmark synthetic datasets. We further consider the performance of NN methods on real datasets, and relate it to the dimensionality of the problem. Next, we analyze the theoretical properties of NN-methods for anomaly detection by studying a more general quantity called distance-to-measure (DTM), originally developed in the literature on robust geometric and topological inference. We provide finite-sample uniform guarantees for the empirical DTM and use them to derive misclassification rates for anomalous observations under various settings. In our analysis we rely on Huber's contamination model and formulate mild geometric regularity assumptions on the underlying distribution of the data.


The bias of the sample mean in multi-armed bandits can be positive or negative

arXiv.org Machine Learning

It is well known that in stochastic multi-armed bandits (MAB), the sample mean of an arm is typically not an unbiased estimator of its true mean. In this paper, we decouple three different sources of this selection bias: adaptive \emph{sampling} of arms, adaptive \emph{stopping} of the experiment and adaptively \emph{choosing} which arm to study. Through a new notion called ``optimism'' that captures certain natural monotonic behaviors of algorithms, we provide a clean and unified analysis of how optimistic rules affect the sign of the bias. The main takeaway message is that optimistic sampling induces a negative bias, but optimistic stopping and optimistic choosing both induce a positive bias. These results are derived in a general stochastic MAB setup that is entirely agnostic to the final aim of the experiment (regret minimization or best-arm identification or anything else). We provide examples of optimistic rules of each type, demonstrate that simulations confirm our theoretical predictions, and pose some natural but hard open problems.


On the bias, risk and consistency of sample means in multi-armed bandits

arXiv.org Machine Learning

In the classic stochastic multi-armed bandit problem, it is well known that the sample mean for a chosen arm is a biased estimator of its true mean. In this paper, we characterize the effect of four sources of this selection bias: adaptively \emph{sampling} an arm at each step, adaptively \emph{stopping} the data collection, adaptively \emph{choosing} which arm to target for mean estimation, and adaptively \emph{rewinding} the clock to focus on the sample mean of the chosen arm at some past time. We qualitatively characterize data collecting strategies for which the bias induced by adaptive sampling and stopping can be negative or positive. For general parametric and nonparametric classes of distributions with varying tail decays, we provide bounds on the risk (expected Bregman divergence between the sample and true mean) that hold for arbitrary rules for sampling, stopping, choosing and rewinding. These risk bounds are minimax optimal up to log factors, and imply tight bounds on the selection bias and sufficient conditions for their consistency.


Markov Properties of Discrete Determinantal Point Processes

arXiv.org Machine Learning

Determinantal point processes (DPPs) are probabilistic models for repulsion. When used to represent the occurrence of random subsets of a finite base set, DPPs allow to model global negative associations in a mathematically elegant and direct way. Discrete DPPs have become popular and computationally tractable models for solving several machine learning tasks that require the selection of diverse objects, and have been successfully applied in numerous real-life problems. Despite their popularity, the statistical properties of such models have not been adequately explored. In this note, we derive the Markov properties of discrete DPPs and show how they can be expressed using graphical models.


A Sharp Error Analysis for the Fused Lasso, with Application to Approximate Changepoint Screening

Neural Information Processing Systems

In the 1-dimensional multiple changepoint detection problem, we derive a new fast error rate for the fused lasso estimator, under the assumption that the mean vector has a sparse number of changepoints. This rate is seen to be suboptimal (compared to the minimax rate) by only a factor of $\log\log{n}$. Our proof technique is centered around a novel construction that we call a lower interpolant. We extend our results to misspecified models and exponential family distributions. We also describe the implications of our error analysis for the approximate screening of changepoints.


Distribution-Free Predictive Inference For Regression

arXiv.org Machine Learning

We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called {\it rank-one-out} conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, in order to adapt to heteroskedascity in the data. Finally, we propose a model-free notion of variable importance, called {\it leave-one-covariate-out} or LOCO inference. Accompanying this paper is an R package {\tt conformalInference} that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.


Statistical Inference for Cluster Trees

arXiv.org Machine Learning

A cluster tree provides a highly-interpretable summary of a density function by representing the hierarchy of its high-density clusters. It is estimated using the empirical tree, which is the cluster tree constructed from a density estimator. This paper addresses the basic question of quantifying our uncertainty by assessing the statistical significance of topological features of an empirical cluster tree. We first study a variety of metrics that can be used to compare different trees, analyze their properties and assess their suitability for inference. We then propose methods to construct and summarize confidence sets for the unknown true cluster tree. We introduce a partial ordering on cluster trees which we use to prune some of the statistically insignificant features of the empirical tree, yielding interpretable and parsimonious cluster trees. Finally, we illustrate the proposed methods on a variety of synthetic examples and furthermore demonstrate their utility in the analysis of a Graft-versus-Host Disease (GvHD) data set.