Rey, Vitor Fortes
PIM: Physics-Informed Multi-task Pre-training for Improving Inertial Sensor-Based Human Activity Recognition
Nshimyimana, Dominique, Rey, Vitor Fortes, Suh, Sungho, Zhou, Bo, Lukowicz, Paul
Human activity recognition (HAR) with deep learning models relies on large amounts of labeled data, often challenging to obtain due to associated cost, time, and labor. Self-supervised learning (SSL) has emerged as an effective approach to leverage unlabeled data through pretext tasks, such as masked reconstruction and multitask learning with signal processing-based data augmentations, to pre-train encoder models. However, such methods are often derived from computer vision approaches that disregard physical mechanisms and constraints that govern wearable sensor data and the phenomena they reflect. In this paper, we propose a physics-informed multi-task pre-training (PIM) framework for IMU-based HAR. PIM generates pre-text tasks based on the understanding of basic physical aspects of human motion: including movement speed, angles of movement, and symmetry between sensor placements. Given a sensor signal, we calculate corresponding features using physics-based equations and use them as pretext tasks for SSL. This enables the model to capture fundamental physical characteristics of human activities, which is especially relevant for multi-sensor systems. Experimental evaluations on four HAR benchmark datasets demonstrate that the proposed method outperforms existing state-of-the-art methods, including data augmentation and masked reconstruction, in terms of accuracy and F1 score. We have observed gains of almost 10\% in macro f1 score and accuracy with only 2 to 8 labeled examples per class and up to 3% when there is no reduction in the amount of training data.
Beyond Confusion: A Fine-grained Dialectical Examination of Human Activity Recognition Benchmark Datasets
Geissler, Daniel, Nshimyimana, Dominique, Rey, Vitor Fortes, Suh, Sungho, Zhou, Bo, Lukowicz, Paul
The research of machine learning (ML) algorithms for human activity recognition (HAR) has made significant progress with publicly available datasets. However, most research prioritizes statistical metrics over examining negative sample details. While recent models like transformers have been applied to HAR datasets with limited success from the benchmark metrics, their counterparts have effectively solved problems on similar levels with near 100% accuracy. This raises questions about the limitations of current approaches. This paper aims to address these open questions by conducting a fine-grained inspection of six popular HAR benchmark datasets. We identified for some parts of the data, none of the six chosen state-of-the-art ML methods can correctly classify, denoted as the intersect of false classifications (IFC). Analysis of the IFC reveals several underlying problems, including ambiguous annotations, irregularities during recording execution, and misaligned transition periods. We contribute to the field by quantifying and characterizing annotated data ambiguities, providing a trinary categorization mask for dataset patching, and stressing potential improvements for future data collections.
GenAI Assisting Medical Training
Fritsch, Stefan, Tschoepe, Matthias, Rey, Vitor Fortes, Krupp, Lars, Gruenerbl, Agnes, Monger, Eloise, Travenna, Sarah
Medical procedures such as venipuncture and cannulation are essential for nurses and require precise skills. Learning this skill, in turn, is a challenge for educators due to the number of teachers per class and the complexity of the task. The study aims to help students with skill acquisition and alleviate the educator's workload by integrating generative AI methods to provide real-time feedback Figure 1: AI providing feedback on performed procedure on medical procedures such as venipuncture and cannulation.
MuJo: Multimodal Joint Feature Space Learning for Human Activity Recognition
Fritsch, Stefan Gerd, Oguz, Cennet, Rey, Vitor Fortes, Ray, Lala, Kiefer-Emmanouilidis, Maximilian, Lukowicz, Paul
Human Activity Recognition is a longstanding problem in AI with applications in a broad range of areas: from healthcare, sports and fitness, security, and human computer interaction to robotics. The performance of HAR in real-world settings is strongly dependent on the type and quality of the input signal that can be acquired. Given an unobstructed, high-quality camera view of a scene, computer vision systems, in particular in conjunction with foundational models (e.g., CLIP), can today fairly reliably distinguish complex activities. On the other hand, recognition using modalities such as wearable sensors (which are often more broadly available, e.g, in mobile phones and smartwatches) is a more difficult problem, as the signals often contain less information and labeled training data is more difficult to acquire. In this work, we show how we can improve HAR performance across different modalities using multimodal contrastive pretraining. Our approach MuJo (Multimodal Joint Feature Space Learning), learns a multimodal joint feature space with video, language, pose, and IMU sensor data. The proposed approach combines contrastive and multitask learning methods and analyzes different multitasking strategies for learning a compact shared representation. A large dataset with parallel video, language, pose, and sensor data points is also introduced to support the research, along with an analysis of the robustness of the multimodal joint space for modal-incomplete and low-resource data. On the MM-Fit dataset, our model achieves an impressive Macro F1-Score of up to 0.992 with only 2% of the train data and 0.999 when using all available training data for classification tasks. Moreover, in the scenario where the MM-Fit dataset is unseen, we demonstrate a generalization performance of up to 0.638.
Enhancing Inertial Hand based HAR through Joint Representation of Language, Pose and Synthetic IMUs
Rey, Vitor Fortes, Ray, Lala Shakti Swarup, Qingxin, Xia, Wu, Kaishun, Lukowicz, Paul
Due to the scarcity of labeled sensor data in HAR, prior research has turned to video data to synthesize Inertial Measurement Units (IMU) data, capitalizing on its rich activity annotations. However, generating IMU data from videos presents challenges for HAR in real-world settings, attributed to the poor quality of synthetic IMU data and its limited efficacy in subtle, fine-grained motions. In this paper, we propose Multi$^3$Net, our novel multi-modal, multitask, and contrastive-based framework approach to address the issue of limited data. Our pretraining procedure uses videos from online repositories, aiming to learn joint representations of text, pose, and IMU simultaneously. By employing video data and contrastive learning, our method seeks to enhance wearable HAR performance, especially in recognizing subtle activities.Our experimental findings validate the effectiveness of our approach in improving HAR performance with IMU data. We demonstrate that models trained with synthetic IMU data generated from videos using our method surpass existing approaches in recognizing fine-grained activities.
Text me the data: Generating Ground Pressure Sequence from Textual Descriptions for HAR
Ray, Lala Shakti Swarup, Zhou, Bo, Suh, Sungho, Krupp, Lars, Rey, Vitor Fortes, Lukowicz, Paul
In human activity recognition (HAR), the availability of substantial ground truth is necessary for training efficient models. However, acquiring ground pressure data through physical sensors itself can be cost-prohibitive, time-consuming. To address this critical need, we introduce Text-to-Pressure (T2P), a framework designed to generate extensive ground pressure sequences from textual descriptions of human activities using deep learning techniques. We show that the combination of vector quantization of sensor data along with simple text conditioned auto regressive strategy allows us to obtain high-quality generated pressure sequences from textual descriptions with the help of discrete latent correlation between text and pressure maps. We achieved comparable performance on the consistency between text and generated motion with an R squared value of 0.722, Masked R squared value of 0.892, and FID score of 1.83. Additionally, we trained a HAR model with the the synthesized data and evaluated it on pressure dynamics collected by a real pressure sensor which is on par with a model trained on only real data. Combining both real and synthesized training data increases the overall macro F1 score by 5.9 percent.
iMove: Exploring Bio-impedance Sensing for Fitness Activity Recognition
Liu, Mengxi, Rey, Vitor Fortes, Zhang, Yu, Ray, Lala Shakti Swarup, Zhou, Bo, Lukowicz, Paul
Automatic and precise fitness activity recognition can be beneficial in aspects from promoting a healthy lifestyle to personalized preventative healthcare. While IMUs are currently the prominent fitness tracking modality, through iMove, we show bio-impedence can help improve IMU-based fitness tracking through sensor fusion and contrastive learning.To evaluate our methods, we conducted an experiment including six upper body fitness activities performed by ten subjects over five days to collect synchronized data from bio-impedance across two wrists and IMU on the left wrist.The contrastive learning framework uses the two modalities to train a better IMU-only classification model, where bio-impedance is only required at the training phase, by which the average Macro F1 score with the input of a single IMU was improved by 3.22 \% reaching 84.71 \% compared to the 81.49 \% of the IMU baseline model. We have also shown how bio-impedance can improve human activity recognition (HAR) directly through sensor fusion, reaching an average Macro F1 score of 89.57 \% (two modalities required for both training and inference) even if Bio-impedance alone has an average macro F1 score of 75.36 \%, which is outperformed by IMU alone. In addition, similar results were obtained in an extended study on lower body fitness activity classification, demonstrating the generalisability of our approach.Our findings underscore the potential of sensor fusion and contrastive learning as valuable tools for advancing fitness activity recognition, with bio-impedance playing a pivotal role in augmenting the capabilities of IMU-based systems.
Contrastive Left-Right Wearable Sensors (IMUs) Consistency Matching for HAR
Nshimyimana, Dominique, Rey, Vitor Fortes, Lukowic, Paul
Machine learning algorithms are improving rapidly, but annotating training data remains a bottleneck for many applications. In this paper, we show how real data can be used for self-supervised learning without any transformations by taking advantage of the symmetry present in the activities. Our approach involves contrastive matching of two different sensors (left and right wrist or leg-worn IMUs) to make representations of co-occurring sensor data more similar and those of non-co-occurring sensor data more different. We test our approach on the Opportunity and MM-Fit datasets. In MM-Fit we show significant improvement over the baseline supervised and self-supervised method SimCLR, while for Opportunity there is significant improvement over the supervised baseline and slight improvement when compared to SimCLR. Moreover, our method improves supervised baselines even when using only a small amount of the data for training. Future work should explore under which conditions our method is beneficial for human activity recognition systems and other related applications.
Worker Activity Recognition in Manufacturing Line Using Near-body Electric Field
Suh, Sungho, Rey, Vitor Fortes, Bian, Sizhen, Huang, Yu-Chi, Roลพanec, Joลพe M., Ghinani, Hooman Tavakoli, Zhou, Bo, Lukowicz, Paul
Manufacturing industries strive to improve production efficiency and product quality by deploying advanced sensing and control systems. Wearable sensors are emerging as a promising solution for achieving this goal, as they can provide continuous and unobtrusive monitoring of workers' activities in the manufacturing line. This paper presents a novel wearable sensing prototype that combines IMU and body capacitance sensing modules to recognize worker activities in the manufacturing line. To handle these multimodal sensor data, we propose and compare early, and late sensor data fusion approaches for multi-channel time-series convolutional neural networks and deep convolutional LSTM. We evaluate the proposed hardware and neural network model by collecting and annotating sensor data using the proposed sensing prototype and Apple Watches in the testbed of the manufacturing line. Experimental results demonstrate that our proposed methods achieve superior performance compared to the baseline methods, indicating the potential of the proposed approach for real-world applications in manufacturing industries. Furthermore, the proposed sensing prototype with a body capacitive sensor and feature fusion method improves by 6.35%, yielding a 9.38% higher macro F1 score than the proposed sensing prototype without a body capacitive sensor and Apple Watch data, respectively.
PressureTransferNet: Human Attribute Guided Dynamic Ground Pressure Profile Transfer using 3D simulated Pressure Maps
Ray, Lala Shakti Swarup, Rey, Vitor Fortes, Zhou, Bo, Suh, Sungho, Lukowicz, Paul
We propose PressureTransferNet, a novel method for Human Activity Recognition (HAR) using ground pressure information. Our approach generates body-specific dynamic ground pressure profiles for specific activities by leveraging existing pressure data from different individuals. PressureTransferNet is an encoder-decoder model taking a source pressure map and a target human attribute vector as inputs, producing a new pressure map reflecting the target attribute. To train the model, we use a sensor simulation to create a diverse dataset with various human attributes and pressure profiles. Evaluation on a real-world dataset shows its effectiveness in accurately transferring human attributes to ground pressure profiles across different scenarios. We visually confirm the fidelity of the synthesized pressure shapes using a physics-based deep learning model and achieve a binary R-square value of 0.79 on areas with ground contact. Validation through classification with F1 score (0.911$\pm$0.015) on physical pressure mat data demonstrates the correctness of the synthesized pressure maps, making our method valuable for data augmentation, denoising, sensor simulation, and anomaly detection. Applications span sports science, rehabilitation, and bio-mechanics, contributing to the development of HAR systems.