Ren, Kai
Chance-constrained Linear Quadratic Gaussian Games for Multi-robot Interaction under Uncertainty
Ren, Kai, Salizzoni, Giulio, Gürsoy, Mustafa Emre, Kamgarpour, Maryam
We address safe multi-robot interaction under uncertainty. In particular, we formulate a chance-constrained linear quadratic Gaussian game with coupling constraints and system uncertainties. We find a tractable reformulation of the game and propose a dual ascent algorithm. We prove that the algorithm converges to a generalized Nash equilibrium of the reformulated game, ensuring the satisfaction of the chance constraints. We test our method in driving simulations and real-world robot experiments. Our method ensures safety under uncertainty and generates less conservative trajectories than single-agent model predictive control.
Chance-Constrained Trajectory Planning with Multimodal Environmental Uncertainty
Ren, Kai, Ahn, Heejin, Kamgarpour, Maryam
We tackle safe trajectory planning under Gaussian mixture model (GMM) uncertainty. Specifically, we use a GMM to model the multimodal behaviors of obstacles' uncertain states. Then, we develop a mixed-integer conic approximation to the chance-constrained trajectory planning problem with deterministic linear systems and polyhedral obstacles. When the GMM moments are estimated via finite samples, we develop a tight concentration bound to ensure the chance constraint with a desired confidence. Moreover, to limit the amount of constraint violation, we develop a Conditional Value-at-Risk (CVaR) approach corresponding to the chance constraints and derive a tractable approximation for known and estimated GMM moments. We verify our methods with state-of-the-art trajectory prediction algorithms and autonomous driving datasets.
Causal Rule Learning: Enhancing the Understanding of Heterogeneous Treatment Effect via Weighted Causal Rules
Wu, Ying, Liu, Hanzhong, Ren, Kai, Chang, Xiangyu
Interpretability is a key concern in estimating heterogeneous treatment effects using machine learning methods, especially for healthcare applications where high-stake decisions are often made. Inspired by the Predictive, Descriptive, Relevant framework of interpretability, we propose causal rule learning which finds a refined set of causal rules characterizing potential subgroups to estimate and enhance our understanding of heterogeneous treatment effects. Causal rule learning involves three phases: rule discovery, rule selection, and rule analysis. In the rule discovery phase, we utilize a causal forest to generate a pool of causal rules with corresponding subgroup average treatment effects. The selection phase then employs a D-learning method to select a subset of these rules to deconstruct individual-level treatment effects as a linear combination of the subgroup-level effects. This helps to answer an ignored question by previous literature: what if an individual simultaneously belongs to multiple groups with different average treatment effects? The rule analysis phase outlines a detailed procedure to further analyze each rule in the subset from multiple perspectives, revealing the most promising rules for further validation. The rules themselves, their corresponding subgroup treatment effects, and their weights in the linear combination give us more insights into heterogeneous treatment effects. Simulation and real-world data analysis demonstrate the superior performance of causal rule learning on the interpretable estimation of heterogeneous treatment effect when the ground truth is complex and the sample size is sufficient.
A novel integrated method of detection-grasping for specific object based on the box coordinate matching
Liu, Zongmin, Wang, Jirui, Li, Jie, Li, Zufeng, Ren, Kai, Shi, Peng
To better care for the elderly and disabled, it is essential for service robots to have an effective fusion method of object detection and grasp estimation. However, limited research has been observed on the combination of object detection and grasp estimation. To overcome this technical difficulty, a novel integrated method of detection-grasping for specific object based on the box coordinate matching is proposed in this paper. Firstly, the SOLOv2 instance segmentation model is improved by adding channel attention module (CAM) and spatial attention module (SAM). Then, the atrous spatial pyramid pooling (ASPP) and CAM are added to the generative residual convolutional neural network (GR-CNN) model to optimize grasp estimation. Furthermore, a detection-grasping integrated algorithm based on box coordinate matching (DG-BCM) is proposed to obtain the fusion model of object detection and grasp estimation. For verification, experiments on object detection and grasp estimation are conducted separately to verify the superiority of improved models. Additionally, grasping tasks for several specific objects are implemented on a simulation platform, demonstrating the feasibility and effectiveness of DG-BCM algorithm proposed in this paper.
Dimension-variable Mapless Navigation with Deep Reinforcement Learning
Zhang, Wei, Zhang, Yunfeng, Liu, Ning, Ren, Kai
Deep reinforcement learning (DRL) has exhibited considerable promise in the training of control agents for mapless robot navigation. However, DRL-trained agents are limited to the specific robot dimensions used during training, hindering their applicability when the robot's dimension changes for task-specific requirements. To overcome this limitation, we propose a dimension-variable robot navigation method based on DRL. Our approach involves training a meta agent in simulation and subsequently transferring the meta skill to a dimension-varied robot using a technique called dimension-variable skill transfer (DVST). During the training phase, the meta agent for the meta robot learns self-navigation skills with DRL. In the skill-transfer phase, observations from the dimension-varied robot are scaled and transferred to the meta agent, and the resulting control policy is scaled back to the dimension-varied robot. Through extensive simulated and real-world experiments, we demonstrated that the dimension-varied robots could successfully navigate in unknown and dynamic environments without any retraining. The results show that our work substantially expands the applicability of DRL-based navigation methods, enabling them to be used on robots with different dimensions without the limitation of a fixed dimension. The video of our experiments can be found in the supplementary file.
A CNN-LSTM Quantifier for Single Access Point CSI Indoor Localization
Hoang, Minh Tu, Yuen, Brosnan, Ren, Kai, Dong, Xiaodai, Lu, Tao, Westendorp, Robert, Reddy, Kishore
This paper proposes a combined network structure between convolutional neural network (CNN) and long-short term memory (LSTM) quantifier for WiFi fingerprinting indoor localization. In contrast to conventional methods that utilize only spatial data with classification models, our CNN-LSTM network extracts both space and time features of the received channel state information (CSI) from a single router. Furthermore, the proposed network builds a quantification model rather than a limited classification model as in most of the literature work, which enables the estimation of testing points that are not identical to the reference points. We analyze the instability of CSI and demonstrate a mitigation solution using a comprehensive filter and normalization scheme. The localization accuracy is investigated through extensive on-site experiments with several mobile devices including mobile phone (Nexus 5) and laptop (Intel 5300 NIC) on hundreds of testing locations. Using only a single WiFi router, our structure achieves an average localization error of 2.5~m with $\mathrm{80\%}$ of the errors under 4~m, which outperforms the other reported algorithms by approximately $\mathrm{50\%}$ under the same test environment.