Goto

Collaborating Authors

 Reitter, David


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Investigating Content Planning for Navigating Trade-offs in Knowledge-Grounded Dialogue

arXiv.org Artificial Intelligence

Knowledge-grounded dialogue generation is a challenging task because it requires satisfying two fundamental yet often competing constraints: being responsive in a manner that is specific to what the conversation partner has said while also being attributable to an underlying source document. In this work, we bring this trade-off between these two objectives (specificity and attribution) to light and ask the question: Can explicit content planning before the response generation help the model to address this challenge? To answer this question, we design a framework called PLEDGE, which allows us to experiment with various plan variables explored in prior work, supporting both metric-agnostic and metric-aware approaches. While content planning shows promise, our results on whether it can actually help to navigate this trade-off are mixed -- planning mechanisms that are metric-aware (use automatic metrics during training) are better at automatic evaluations but underperform in human judgment compared to metric-agnostic mechanisms. We discuss how this may be caused by over-fitting to automatic metrics and the need for future work to better calibrate these metrics towards human judgment. We hope the observations from our analysis will inform future work that aims to apply content planning in this context.


Gemini: A Family of Highly Capable Multimodal Models

arXiv.org Artificial Intelligence

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.


KL-Divergence Guided Temperature Sampling

arXiv.org Artificial Intelligence

Temperature sampling is a conventional approach to diversify large language model predictions. As temperature increases, the prediction becomes diverse but also vulnerable to hallucinations -- generating tokens that are sensible but not factual. One common approach to mitigate hallucinations is to provide source/grounding documents and the model is trained to produce predictions that bind to and are attributable to the provided source. It appears that there is a trade-off between diversity and attribution. To mitigate any such trade-off, we propose to relax the constraint of having a fixed temperature over decoding steps, and a mechanism to guide the dynamic temperature according to its relevance to the source through KL-divergence. Our experiments justifies the trade-off, and shows that our sampling algorithm outperforms the conventional top-k and top-p algorithms in conversational question-answering and summarization tasks.


How do decoding algorithms distribute information in dialogue responses?

arXiv.org Artificial Intelligence

Humans tend to follow the Uniform Information Density (UID) principle by distributing information evenly in utterances. We study if decoding algorithms implicitly follow this UID principle, and under what conditions adherence to UID might be desirable for dialogue generation. We generate responses using different decoding algorithms with GPT-2 on the Persona-Chat dataset and collect human judgments on their quality using Amazon Mechanical Turk. We find that (i) surprisingly, model-generated responses follow the UID principle to a greater extent than human responses, and (ii) decoding algorithms that promote UID do not generate higher-quality responses. Instead, when we control for surprisal, non-uniformity of information density correlates with the quality of responses with very low/high surprisal. Our findings indicate that encouraging non-uniform responses is a potential solution to the ``likelihood trap'' problem (quality degradation in very high-likelihood text). Our dataset containing multiple candidate responses per dialog history along with human-annotated quality ratings is available at https://huggingface.co/datasets/saranya132/dialog_uid_gpt2.


Characterizing Attribution and Fluency Tradeoffs for Retrieval-Augmented Large Language Models

arXiv.org Artificial Intelligence

Despite recent progress, it has been difficult to prevent semantic hallucinations in generative Large Language Models. One common solution to this is augmenting LLMs with a retrieval system and making sure that the generated output is attributable to the retrieved information. Given this new added constraint, it is plausible to expect that the overall quality of the output will be affected, for example, in terms of fluency. Can scaling language models help? Here we examine the relationship between fluency and attribution in LLMs prompted with retrieved evidence in knowledge-heavy dialog settings. Our experiments were implemented with a set of auto-metrics that are aligned with human preferences. They were used to evaluate a large set of generations, produced under varying parameters of LLMs and supplied context. We show that larger models tend to do much better in both fluency and attribution, and that (naively) using top-k retrieval versus top-1 retrieval improves attribution but hurts fluency. We next propose a recipe that could allow smaller models to both close the gap with larger models and preserve the benefits of top-k retrieval while avoiding its drawbacks.


Dungeons and Dragons as a Dialog Challenge for Artificial Intelligence

arXiv.org Artificial Intelligence

AI researchers have posited Dungeons and Dragons (D&D) as a challenge problem to test systems on various language-related capabilities. In this paper, we frame D&D specifically as a dialogue system challenge, where the tasks are to both generate the next conversational turn in the game and predict the state of the game given the dialogue history. We create a gameplay dataset consisting of nearly 900 games, with a total of 7,000 players, 800,000 dialogue turns, 500,000 dice rolls, and 58 million words. We automatically annotate the data with partial state information about the game play. We train a large language model (LM) to generate the next game turn, conditioning it on different information. The LM can respond as a particular character or as the player who runs the game--i.e., the Dungeon Master (DM). It is trained to produce dialogue that is either in-character (roleplaying in the fictional world) or out-of-character (discussing rules or strategy). We perform a human evaluation to determine what factors make the generated output plausible and interesting. We further perform an automatic evaluation to determine how well the model can predict the game state given the history and examine how well tracking the game state improves its ability to produce plausible conversational output.


Do We Need Neural Models to Explain Human Judgments of Acceptability?

arXiv.org Artificial Intelligence

Native speakers can judge whether a sentence is an acceptable instance of their language. Acceptability provides a means of evaluating whether computational language models are processing language in a human-like manner. We test the ability of computational language models, simple language features, and word embeddings to predict native English speakers judgments of acceptability on English-language essays written by non-native speakers. We find that much of the sentence acceptability variance can be captured by a combination of features including misspellings, word order, and word similarity (Pearson's r = 0.494). While predictive neural models fit acceptability judgments well (r = 0.527), we find that a 4-gram model with statistical smoothing is just as good (r = 0.528). Thanks to incorporating a count of misspellings, our 4-gram model surpasses both the previous unsupervised state-of-the art (Lau et al., 2015; r = 0.472), and the average non-expert native speaker (r = 0.46). Our results demonstrate that acceptability is well captured by n-gram statistics and simple language features.


Visually Grounded, Situated Learning in Neural Models

arXiv.org Artificial Intelligence

The theory of situated cognition postulates that language is inseparable from its physical context--words, phrases, and sentences must be learned in the context of the objects or concepts to which they refer. Yet, statistical language models are trained on words alone. This makes it impossible for language models to connect to the real world--the world described in the sentences presented to the model. In this paper, we examine the generalization ability of neural language models trained with a visual context. A multimodal connectionist language architecture based on the Differential State Framework is proposed, which outperforms its equivalent trained on language alone, even when no visual context is available at test time. Superior performance for language models trained with a visual context is robust across different languages and models.


Learning to Adapt by Minimizing Discrepancy

arXiv.org Machine Learning

We explore whether useful temporal neural generative models can be learned from sequential data without back-propagation through time. We investigate the viability of a more neurocognitively-grounded approach in the context of unsupervised generative modeling of sequences. Specifically, we build on the concept of predictive coding, which has gained influence in cognitive science, in a neural framework. To do so we develop a novel architecture, the Temporal Neural Coding Network, and its learning algorithm, Discrepancy Reduction. The underlying directed generative model is fully recurrent, meaning that it employs structural feedback connections and temporal feedback connections, yielding information propagation cycles that create local learning signals. This facilitates a unified bottom-up and top-down approach for information transfer inside the architecture. Our proposed algorithm shows promise on the bouncing balls generative modeling problem. Further experiments could be conducted to explore the strengths and weaknesses of our approach.