Reddy, Revanth Gangi
CoRNStack: High-Quality Contrastive Data for Better Code Ranking
Suresh, Tarun, Reddy, Revanth Gangi, Xu, Yifei, Nussbaum, Zach, Mulyar, Andriy, Duderstadt, Brandon, Ji, Heng
Effective code retrieval plays a crucial role in advancing code generation, bug fixing, and software maintenance, particularly as software systems increase in complexity. While current code embedding models have demonstrated promise in retrieving code snippets for small-scale, well-defined tasks, they often underperform in more demanding real-world applications such as bug localization within GitHub repositories. We hypothesize that a key issue is their reliance on noisy and inconsistent datasets for training, which impedes their ability to generalize to more complex retrieval scenarios. To address these limitations, we introduce CoRNStack, a large-scale, high-quality contrastive training dataset for code that spans multiple programming languages. This dataset is curated using consistency filtering to eliminate noisy positives and is further enriched with mined hard negatives, thereby facilitating more effective learning. We demonstrate that contrastive training of embedding models using CoRNStack leads to state-of-the-art performance across a variety of code retrieval tasks. Furthermore, the dataset can be leveraged for training code reranking models, a largely underexplored area compared to text reranking. Our finetuned code reranking model significantly improves the ranking quality over the retrieved results. Finally, by employing our code retriever and reranker together, we demonstrate significant improvements in function localization for GitHub issues, an important component of real-world software development.
Schema-Guided Culture-Aware Complex Event Simulation with Multi-Agent Role-Play
Li, Sha, Reddy, Revanth Gangi, Nguyen, Khanh Duy, Wang, Qingyun, Fung, May, Han, Chi, Han, Jiawei, Natarajan, Kartik, Voss, Clare R., Ji, Heng
Complex news events, such as natural disasters and socio-political conflicts, require swift responses from the government and society. Relying on historical events to project the future is insufficient as such events are sparse and do not cover all possible conditions and nuanced situations. Simulation of these complex events can help better prepare and reduce the negative impact. We develop a controllable complex news event simulator guided by both the event schema representing domain knowledge about the scenario and user-provided assumptions representing case-specific conditions. As event dynamics depend on the fine-grained social and cultural context, we further introduce a geo-diverse commonsense and cultural norm-aware knowledge enhancement component. To enhance the coherence of the simulation, apart from the global timeline of events, we take an agent-based approach to simulate the individual character states, plans, and actions. By incorporating the schema and cultural norms, our generated simulations achieve much higher coherence and appropriateness and are received favorably by participants from a humanitarian assistance organization.
Infogent: An Agent-Based Framework for Web Information Aggregation
Reddy, Revanth Gangi, Mukherjee, Sagnik, Kim, Jeonghwan, Wang, Zhenhailong, Hakkani-Tur, Dilek, Ji, Heng
Despite seemingly performant web agents on the task-completion benchmarks, most existing methods evaluate the agents based on a presupposition: the web navigation task consists of linear sequence of actions with an end state that marks task completion. In contrast, our work focuses on web navigation for information aggregation, wherein the agent must explore different websites to gather information for a complex query. We consider web information aggregation from two different perspectives: (i) Direct API-driven Access relies on a text-only view of the Web, leveraging external tools such as Google Search API to navigate the web and a scraper to extract website contents. (ii) Interactive Visual Access uses screenshots of the webpages and requires interaction with the browser to navigate and access information. Motivated by these diverse information access settings, we introduce Infogent, a novel modular framework for web information aggregation involving three distinct components: Navigator, Extractor and Aggregator. Experiments on different information access settings demonstrate Infogent beats an existing SOTA multi-agent search framework by 7% under Direct API-Driven Access on FRAMES, and improves over an existing information-seeking web agent by 4.3% under Interactive Visual Access on AssistantBench.
AGRaME: Any-Granularity Ranking with Multi-Vector Embeddings
Reddy, Revanth Gangi, Attia, Omar, Li, Yunyao, Ji, Heng, Potdar, Saloni
Ranking is a fundamental and popular problem in search. However, existing ranking algorithms usually restrict the granularity of ranking to full passages or require a specific dense index for each desired level of granularity. Such lack of flexibility in granularity negatively affects many applications that can benefit from more granular ranking, such as sentence-level ranking for open-domain question-answering, or proposition-level ranking for attribution. In this work, we introduce the idea of any-granularity ranking, which leverages multi-vector embeddings to rank at varying levels of granularity while maintaining encoding at a single (coarser) level of granularity. We propose a multi-granular contrastive loss for training multi-vector approaches, and validate its utility with both sentences and propositions as ranking units. Finally, we demonstrate the application of proposition-level ranking to post-hoc citation addition in retrieval-augmented generation, surpassing the performance of prompt-driven citation generation.
Towards Better Generalization in Open-Domain Question Answering by Mitigating Context Memorization
Zhang, Zixuan, Reddy, Revanth Gangi, Small, Kevin, Zhang, Tong, Ji, Heng
Open-domain Question Answering (OpenQA) aims at answering factual questions with an external large-scale knowledge corpus. However, real-world knowledge is not static; it updates and evolves continually. Such a dynamic characteristic of knowledge poses a vital challenge for these models, as the trained models need to constantly adapt to the latest information to make sure that the answers remain accurate. In addition, it is still unclear how well an OpenQA model can transfer to completely new knowledge domains. In this paper, we investigate the generalization performance of a retrieval-augmented QA model in two specific scenarios: 1) adapting to updated versions of the same knowledge corpus; 2) switching to completely different knowledge domains. We observe that the generalization challenges of OpenQA models stem from the reader's over-reliance on memorizing the knowledge from the external corpus, which hinders the model from generalizing to a new knowledge corpus. We introduce Corpus-Invariant Tuning (CIT), a simple but effective training strategy, to mitigate the knowledge over-memorization by controlling the likelihood of retrieved contexts during training. Extensive experimental results on multiple OpenQA benchmarks show that CIT achieves significantly better generalizability without compromising the model's performance in its original corpus and domain.
Factcheck-GPT: End-to-End Fine-Grained Document-Level Fact-Checking and Correction of LLM Output
Wang, Yuxia, Reddy, Revanth Gangi, Mujahid, Zain Muhammad, Arora, Arnav, Rubashevskii, Aleksandr, Geng, Jiahui, Afzal, Osama Mohammed, Pan, Liangming, Borenstein, Nadav, Pillai, Aditya, Augenstein, Isabelle, Gurevych, Iryna, Nakov, Preslav
The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. In this work, we present a holistic end-to-end solution for annotating the factuality of LLM-generated responses, which encompasses a multi-stage annotation scheme designed to yield detailed labels concerning the verifiability and factual inconsistencies found in LLM outputs. We design and build an annotation tool to speed up the labelling procedure and ease the workload of raters. It allows flexible incorporation of automatic results in any stage, e.g. automatically-retrieved evidence. We further construct an open-domain document-level factuality benchmark in three-level granularity: claim, sentence and document. Preliminary experiments show that FacTool, FactScore and Perplexity.ai are struggling to identify false claims with the best F1=0.53. Annotation tool, benchmark and code are available at https://github.com/yuxiaw/Factcheck-GPT.
C-PMI: Conditional Pointwise Mutual Information for Turn-level Dialogue Evaluation
Ren, Liliang, Sidhu, Mankeerat, Zeng, Qi, Reddy, Revanth Gangi, Ji, Heng, Zhai, ChengXiang
Existing reference-free turn-level evaluation metrics for chatbots inadequately capture the interaction between the user and the system. Consequently, they often correlate poorly with human evaluations. To address this issue, we propose a novel model-agnostic approach that leverages Conditional Pointwise Mutual Information (C-PMI) to measure the turn-level interaction between the system and the user based on a given evaluation dimension. Experimental results on the widely used FED dialogue evaluation dataset demonstrate that our approach significantly improves the correlation with human judgment compared with existing evaluation systems. By replacing the negative log-likelihood-based scorer with our proposed C-PMI scorer, we achieve a relative 62.6% higher Spearman correlation on average for the FED evaluation metric. Our code is publicly available at https://github.com/renll/C-PMI.
Inference-time Re-ranker Relevance Feedback for Neural Information Retrieval
Reddy, Revanth Gangi, Dasigi, Pradeep, Sultan, Md Arafat, Cohan, Arman, Sil, Avirup, Ji, Heng, Hajishirzi, Hannaneh
Neural information retrieval often adopts a retrieve-and-rerank framework: a bi-encoder network first retrieves K (e.g., 100) candidates that are then re-ranked using a more powerful cross-encoder model to rank the better candidates higher. The re-ranker generally produces better candidate scores than the retriever, but is limited to seeing only the top K retrieved candidates, thus providing no improvements in retrieval performance as measured by Recall@K. In this work, we leverage the re-ranker to also improve retrieval by providing inference-time relevance feedback to the retriever. Concretely, we update the retriever's query representation for a test instance using a lightweight inference-time distillation of the re-ranker's prediction for that instance. The distillation loss is designed to bring the retriever's candidate scores closer to those of the re-ranker. A second retrieval step is then performed with the updated query vector. We empirically show that our approach, which can serve arbitrary retrieve-and-rerank pipelines, significantly improves retrieval recall in multiple domains, languages, and modalities.
SmartBook: AI-Assisted Situation Report Generation
Reddy, Revanth Gangi, Fung, Yi R., Zeng, Qi, Li, Manling, Wang, Ziqi, Sullivan, Paul, Ji, Heng
Emerging events, such as the COVID pandemic and the Ukraine Crisis, require a time-sensitive comprehensive understanding of the situation to allow for appropriate decision-making and effective action response. Automated generation of situation reports can significantly reduce the time, effort, and cost for domain experts when preparing their official human-curated reports. However, AI research toward this goal has been very limited, and no successful trials have yet been conducted to automate such report generation. We propose SmartBook, a novel task formulation targeting situation report generation, which consumes large volumes of news data to produce a structured situation report with multiple hypotheses (claims) summarized and grounded with rich links to factual evidence. We realize SmartBook for the Ukraine-Russia crisis by automatically generating intelligence analysis reports to assist expert analysts. The machine-generated reports are structured in the form of timelines, with each timeline organized by major events (or chapters), corresponding strategic questions (or sections) and their grounded summaries (or section content). Our proposed framework automatically detects real-time event-related strategic questions, which are more directed than manually-crafted analyst questions, which tend to be too complex, hard to parse, vague and high-level. Results from thorough qualitative evaluations show that roughly 82% of the questions in Smartbook have strategic importance, with at least 93% of the sections in the report being tactically useful. Further, experiments show that expert analysts tend to add more information into the SmartBook reports, with only 2.3% of the existing tokens being deleted, meaning SmartBook can serve as a useful foundation for analysts to build upon when creating intelligence reports.
SumREN: Summarizing Reported Speech about Events in News
Reddy, Revanth Gangi, Elfardy, Heba, Chan, Hou Pong, Small, Kevin, Ji, Heng
A primary objective of news articles is to establish the factual record for an event, frequently achieved by conveying both the details of the specified event (i.e., the 5 Ws; Who, What, Where, When and Why regarding the event) and how people reacted to it (i.e., reported statements). However, existing work on news summarization almost exclusively focuses on the event details. In this work, we propose the novel task of summarizing the reactions of different speakers, as expressed by their reported statements, to a given event. To this end, we create a new multi-document summarization benchmark, SUMREN, comprising 745 summaries of reported statements from various public figures obtained from 633 news articles discussing 132 events. We propose an automatic silver training data generation approach for our task, which helps smaller models like BART achieve GPT-3 level performance on this task. Finally, we introduce a pipeline-based framework for summarizing reported speech, which we empirically show to generate summaries that are more abstractive and factual than baseline query-focused summarization approaches.