Goto

Collaborating Authors

 Recht, Benjamin


Regret Bounds for Robust Adaptive Control of the Linear Quadratic Regulator

Neural Information Processing Systems

We consider adaptive control of the Linear Quadratic Regulator (LQR), where an unknown linear system is controlled subject to quadratic costs. Leveraging recent developments in the estimation of linear systems and in robust controller synthesis, we present the first provably polynomial time algorithm that provides high probability guarantees of sub-linear regret on this problem. We further study the interplay between regret minimization and parameter estimation by proving a lower bound on the expected regret in terms of the exploration schedule used by any algorithm. Finally, we conduct a numerical study comparing our robust adaptive algorithm to other methods from the adaptive LQR literature, and demonstrate the flexibility of our proposed method by extending it to a demand forecasting problem subject to state constraints.


Simple random search of static linear policies is competitive for reinforcement learning

Neural Information Processing Systems

Model-free reinforcement learning aims to offer off-the-shelf solutions for controlling dynamical systems without requiring models of the system dynamics. We introduce a model-free random search algorithm for training static, linear policies for continuous control problems. Common evaluation methodology shows that our method matches state-of-the-art sample efficiency on the benchmark MuJoCo locomotion tasks. Nonetheless, more rigorous evaluation reveals that the assessment of performance on these benchmarks is optimistic. We evaluate the performance of our method over hundreds of random seeds and many different hyperparameter configurations for each benchmark task. This extensive evaluation is possible because of the small computational footprint of our method. Our simulations highlight a high variability in performance in these benchmark tasks, indicating that commonly used estimations of sample efficiency do not adequately evaluate the performance of RL algorithms. Our results stress the need for new baselines, benchmarks and evaluation methodology for RL algorithms.


Regret Bounds for Robust Adaptive Control of the Linear Quadratic Regulator

Neural Information Processing Systems

We consider adaptive control of the Linear Quadratic Regulator (LQR), where an unknown linear system is controlled subject to quadratic costs. Leveraging recent developments in the estimation of linear systems and in robust controller synthesis, we present the first provably polynomial time algorithm that provides high probability guarantees of sub-linear regret on this problem. We further study the interplay between regret minimization and parameter estimation by proving a lower bound on the expected regret in terms of the exploration schedule used by any algorithm. Finally, we conduct a numerical study comparing our robust adaptive algorithm to other methods from the adaptive LQR literature, and demonstrate the flexibility of our proposed method by extending it to a demand forecasting problem subject to state constraints.


Simple random search of static linear policies is competitive for reinforcement learning

Neural Information Processing Systems

Model-free reinforcement learning aims to offer off-the-shelf solutions for controlling dynamical systems without requiring models of the system dynamics. We introduce a model-free random search algorithm for training static, linear policies for continuous control problems. Common evaluation methodology shows that our method matches state-of-the-art sample efficiency on the benchmark MuJoCo locomotion tasks. Nonetheless, more rigorous evaluation reveals that the assessment of performance on these benchmarks is optimistic. We evaluate the performance of our method over hundreds of random seeds and many different hyperparameter configurations for each benchmark task. This extensive evaluation is possible because of the small computational footprint of our method. Our simulations highlight a high variability in performance in these benchmark tasks, indicating that commonly used estimations of sample efficiency do not adequately evaluate the performance of RL algorithms. Our results stress the need for new baselines, benchmarks and evaluation methodology for RL algorithms.


The Gap Between Model-Based and Model-Free Methods on the Linear Quadratic Regulator: An Asymptotic Viewpoint

arXiv.org Machine Learning

The effectiveness of model-based versus model-free methods is a long-standing question in reinforcement learning (RL). Motivated by recent empirical success of RL on continuous control tasks, we study the sample complexity of popular model-based and model-free algorithms on the Linear Quadratic Regulator (LQR). We show that for policy evaluation, a simple model-based plugin method requires asymptotically less samples than the classical least-squares temporal difference (LSTD) estimator to reach the same quality of solution; the sample complexity gap between the two methods can be at least a factor of state dimension. For policy evaluation, we study a simple family of problem instances and show that nominal (certainty equivalence principle) control also requires a factor of state dimension fewer samples than the policy gradient method to reach the same level of control performance on these instances. Furthermore, the gap persists even when employing baselines commonly used in practice. To the best of our knowledge, this is the first theoretical result which demonstrates a separation in the sample complexity between model-based and model-free methods on a continuous control task.


Massively Parallel Hyperparameter Tuning

arXiv.org Machine Learning

Modern learning models are characterized by large hyperparameter spaces. In order to adequately explore these large spaces, we must evaluate a large number of configurations, typically orders of magnitude more configurations than available parallel workers. Given the growing costs of model training, we would ideally like to perform this search in roughly the same wall-clock time needed to train a single model. In this work, we tackle this challenge by introducing ASHA, a simple and robust hyperparameter tuning algorithm with solid theoretical underpinnings that exploits parallelism and aggressive early-stopping. Our extensive empirical results show that ASHA slightly outperforms Fabolas and Population Based Tuning, state-of-the hyperparameter tuning methods; scales linearly with the number of workers in distributed settings; converges to a high quality configuration in half the time taken by Vizier (Google's internal hyperparameter tuning service) in an experiment with 500 workers; and beats the published result for a near state-of-the-art LSTM architecture in under 2x the time to train a single model.


A Successive-Elimination Approach to Adaptive Robotic Sensing

arXiv.org Machine Learning

We study the adaptive sensing problem for the multiple source seeking problem, where a mobile robot must identify the strongest emitters in an environment with background emissions. Background signals may be highly heterogeneous, and can mislead algorithms which are based on receding horizon control, greedy heuristics, or smooth background priors. We propose AdaSearch, a general algorithm for adaptive sensing. AdaSearch combines global trajectory planning with principled confidence intervals in order to concentrate measurements in promising regions while still guaranteeing sufficient coverage of the entire area. Theoretical analysis shows that AdaSearch significantly outperforms a uniform sampling strategy when the distribution of background signals is highly variable. Simulation studies demonstrate that when applied to the problem of radioactive source-seeking, AdaSearch outperforms both uniform sampling and a receding time horizon information-maximization approach based on the current literature. We corroborate these findings with a hardware demonstration, using a small quadrotor helicopter in a motion-capture arena.


Safely Learning to Control the Constrained Linear Quadratic Regulator

arXiv.org Machine Learning

While data-driven design has considerable potential in contemporary control systems where precise modeling of the dynamics is intractable (e.g., systems with complex contact forces), one of the biggest hurdles to overcome for practical deployment is maintaining safe execution during the learning process. Motivated by this issue, we study the data-driven design of a controller for the constrained Linear Quadratic Regulator (LQR) problem. In constrained LQR, we design a controller for a (potentially unknown) linear dynamical system that minimizes a given quadratic cost, subject to the additional requirement that both the state and input stay within a specified safe region. This is a problem that has received much attention within the model predictive control (MPC) community. For the LQR problem with no constraints, a natural method of exploration for learning the dynamics is to excite the system by injecting white noise. When safety is not an issue, this method is effective and recently Dean et al. [1] provide an end-to-end sample complexity S. Dean, S. Tu, N. Matni, and B. Recht are with the Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94709 USA (email: dean sarah@berkeley.edu,


A Tour of Reinforcement Learning: The View from Continuous Control

arXiv.org Machine Learning

This manuscript surveys reinforcement learning from the perspective of optimization and control with a focus on continuous control applications. It surveys the general formulation, terminology, and typical experimental implementations of reinforcement learning and reviews competing solution paradigms. In order to compare the relative merits of various techniques, this survey presents a case study of the Linear Quadratic Regulator (LQR) with unknown dynamics, perhaps the simplest and best studied problem in optimal control. The manuscript describes how merging techniques from learning theory and control can provide non-asymptotic characterizations of LQR performance and shows that these characterizations tend to match experimental behavior. In turn, when revisiting more complex applications, many of the observed phenomena in LQR persist. In particular, theory and experiment demonstrate the role and importance of models and the cost of generality in reinforcement learning algorithms. This survey concludes with a discussion of some of the challenges in designing learning systems that safely and reliably interact with complex and uncertain environments and how tools from reinforcement learning and controls might be combined to approach these challenges.


Do CIFAR-10 Classifiers Generalize to CIFAR-10?

arXiv.org Machine Learning

Machine learning is currently dominated by largely experimental work focused on improvements in a few key tasks. However, the impressive accuracy numbers of the best performing models are questionable because the same test sets have been used to select these models for multiple years now. To understand the danger of overfitting, we measure the accuracy of CIFAR-10 classifiers by creating a new test set of truly unseen images. Although we ensure that the new test set is as close to the original data distribution as possible, we find a large drop in accuracy (4% to 10%) for a broad range of deep learning models. Yet more recent models with higher original accuracy show a smaller drop and better overall performance, indicating that this drop is likely not due to overfitting based on adaptivity. Instead, we view our results as evidence that current accuracy numbers are brittle and susceptible to even minute natural variations in the data distribution.