Razzak, Muhammed
Fine-Tuning Large Language Models to Appropriately Abstain with Semantic Entropy
Tjandra, Benedict Aaron, Razzak, Muhammed, Kossen, Jannik, Handa, Kunal, Gal, Yarin
Large Language Models (LLMs) are known to hallucinate, whereby they generate plausible but inaccurate text. This phenomenon poses significant risks in critical applications, such as medicine or law, necessitating robust hallucination mitigation strategies. While recent works have proposed fine-tuning methods to teach LLMs to abstain from answering questions beyond their knowledge or capabilities, these methods rely on the existence of ground-truth labels or are limited to short-form responses. To address these limitations, we propose fine-tuning using semantic entropy, an uncertainty measure derived from introspection into the model which does not require external labels. We demonstrate that our approach matches or outperforms models fine-tuned using prior work and achieves strong performance for both short and long-form generations on a range of datasets.
The Benefits and Risks of Transductive Approaches for AI Fairness
Razzak, Muhammed, Kirsch, Andreas, Gal, Yarin
Recently, transductive learning methods, which leverage holdout sets during training, have gained popularity for their potential to improve speed, accuracy, and fairness in machine learning models. Despite this, the composition of the holdout set itself, particularly the balance of sensitive sub-groups, has been largely overlooked. Our experiments on CIFAR and CelebA datasets show that compositional changes in the holdout set can substantially influence fairness metrics. Imbalanced holdout sets exacerbate existing disparities, while balanced holdouts can mitigate issues introduced by imbalanced training data. These findings underline the necessity of constructing holdout sets that are both diverse and representative.
Prioritized training on points that are learnable, worth learning, and not yet learned (workshop version)
Mindermann, Sören, Razzak, Muhammed, Xu, Winnie, Kirsch, Andreas, Sharma, Mrinank, Morisot, Adrien, Gomez, Aidan N., Farquhar, Sebastian, Brauner, Jan, Gal, Yarin
We introduce Goldilocks Selection, a technique for faster model training which selects a sequence of training points that are "just right". We propose an information-theoretic acquisition function -- the reducible validation loss -- and compute it with a small proxy model -- GoldiProx -- to efficiently choose training points that maximize information about a validation set. We show that the "hard" (e.g. high loss) points usually selected in the optimization literature are typically noisy, while the "easy" (e.g. low noise) samples often prioritized for curriculum learning confer less information. Further, points with uncertain labels, typically targeted by active learning, tend to be less relevant to the task. In contrast, Goldilocks Selection chooses points that are "just right" and empirically outperforms the above approaches. Moreover, the selected sequence can transfer to other architectures; practitioners can share and reuse it without the need to recreate it.