Goto

Collaborating Authors

 Rawal, Aditya


Sequence-level Large Language Model Training with Contrastive Preference Optimization

arXiv.org Artificial Intelligence

The next token prediction loss is the dominant self-supervised training objective for large language models and has achieved promising results in a variety of downstream tasks. However, upon closer investigation of this objective, we find that it lacks an understanding of sequence-level signals, leading to a mismatch between training and inference processes. To bridge this gap, we introduce a contrastive preference optimization (CPO) procedure that can inject sequence-level information into the language model at any training stage without expensive human labeled data. Our experiments show that the proposed objective surpasses the next token prediction in terms of win rate in the instruction-following and text generation tasks.


Extreme Miscalibration and the Illusion of Adversarial Robustness

arXiv.org Artificial Intelligence

Deep learning-based Natural Language Processing (NLP) models are vulnerable to adversarial attacks, where small perturbations can cause a model to misclassify. Adversarial Training (AT) is often used to increase model robustness. However, we have discovered an intriguing phenomenon: deliberately or accidentally miscalibrating models masks gradients in a way that interferes with adversarial attack search methods, giving rise to an apparent increase in robustness. We show that this observed gain in robustness is an illusion of robustness (IOR), and demonstrate how an adversary can perform various forms of test-time temperature calibration to nullify the aforementioned interference and allow the adversarial attack to find adversarial examples. Hence, we urge the NLP community to incorporate test-time temperature scaling into their robustness evaluations to ensure that any observed gains are genuine. Finally, we show how the temperature can be scaled during \textit{training} to improve genuine robustness.


Memory Efficient Continual Learning with Transformers

arXiv.org Artificial Intelligence

In many real-world scenarios, data to train machine learning models becomes available over time. Unfortunately, these models struggle to continually learn new concepts without forgetting what has been learnt in the past. This phenomenon is known as catastrophic forgetting and it is difficult to prevent due to practical constraints. For instance, the amount of data that can be stored or the computational resources that can be used might be limited. Moreover, applications increasingly rely on large pre-trained neural networks, such as pre-trained Transformers, since the resources or data might not be available in sufficiently large quantities to practitioners to train the model from scratch. In this paper, we devise a method to incrementally train a model on a sequence of tasks using pre-trained Transformers and extending them with Adapters. Different than the existing approaches, our method is able to scale to a large number of tasks without significant overhead and allows sharing information across tasks. On both image and text classification tasks, we empirically demonstrate that our method maintains a good predictive performance without retraining the model or increasing the number of model parameters over time. The resulting model is also significantly faster at inference time compared to Adapter-based state-of-the-art methods.


Synthetic Petri Dish: A Novel Surrogate Model for Rapid Architecture Search

arXiv.org Machine Learning

Neural Architecture Search (NAS) explores a large space of architectural motifs -- a compute-intensive process that often involves ground-truth evaluation of each motif by instantiating it within a large network, and training and evaluating the network with thousands of domain-specific data samples. Inspired by how biological motifs such as cells are sometimes extracted from their natural environment and studied in an artificial Petri dish setting, this paper proposes the Synthetic Petri Dish model for evaluating architectural motifs. In the Synthetic Petri Dish, architectural motifs are instantiated in very small networks and evaluated using very few learned synthetic data samples (to effectively approximate performance in the full problem). The relative performance of motifs in the Synthetic Petri Dish can substitute for their ground-truth performance, thus accelerating the most expensive step of NAS. Unlike other neural network-based prediction models that parse the structure of the motif to estimate its performance, the Synthetic Petri Dish predicts motif performance by training the actual motif in an artificial setting, thus deriving predictions from its true intrinsic properties. Experiments in this paper demonstrate that the Synthetic Petri Dish can therefore predict the performance of new motifs with significantly higher accuracy, especially when insufficient ground truth data is available. Our hope is that this work can inspire a new research direction in studying the performance of extracted components of models in an alternative controlled setting.


First-Order Preconditioning via Hypergradient Descent

arXiv.org Machine Learning

A BSTRACT Standard gradient descent methods are susceptible to a range of issues that can impede training, such as high correlations and different scaling in parameter space. These difficulties can be addressed by second-order approaches that apply a preconditioning matrix to the gradient to improve convergence. Unfortunately, such algorithms typically struggle to scale to high-dimensional problems, in part because the calculation of specific preconditioners such as the inverse Hessian or Fisher information matrix is highly expensive. We introduce first-order preconditioning (FOP), a fast, scalable approach that generalizes previous work on hyper-gradient descent (Almeida et al., 1998; Maclaurin et al., 2015; Baydin et al., 2017) to learn a preconditioning matrix that only makes use of first-order information. Experiments show that FOP is able to improve the performance of standard deep learning optimizers on several visual classification tasks with minimal computational overhead. We also investigate the properties of the learned preconditioning matrices and perform a preliminary theoretical analysis of the algorithm. Despite this, deep neural networks and other large-scale machine learning models applied to such problems typically rely on simple variations of gradient descent to train, which is known to be highly sensitive to these difficulties.