Goto

Collaborating Authors

 Ratnaparkhi, Adwait


Athena 2.0: Discourse and User Modeling in Open Domain Dialogue

arXiv.org Artificial Intelligence

Conversational agents are consistently growing in popularity and many people interact with them every day. While many conversational agents act as personal assistants, they can have many different goals. Some are task-oriented, such as providing customer support for a bank or making a reservation. Others are designed to be empathetic and to form emotional connections with the user. The Alexa Prize Challenge aims to create a socialbot, which allows the user to engage in coherent conversations, on a range of popular topics that will interest the user. Here we describe Athena 2.0, UCSC's conversational agent for Amazon's Socialbot Grand Challenge 4. Athena 2.0 utilizes a novel knowledge-grounded discourse model that tracks the entity links that Athena introduces into the dialogue, and uses them to constrain named-entity recognition and linking, and coreference resolution. Athena 2.0 also relies on a user model to personalize topic selection and other aspects of the conversation to individual users.


MBA: Mini-Batch AUC Optimization

arXiv.org Machine Learning

Area under the receiver operating characteristics curve (AUC) is an important metric for a wide range of signal processing and machine learning problems, and scalable methods for optimizing AUC have recently been proposed. However, handling very large datasets remains an open challenge for this problem. This paper proposes a novel approach to AUC maximization, based on sampling mini-batches of positive/negative instance pairs and computing U-statistics to approximate a global risk minimization problem. The resulting algorithm is simple, fast, and learning-rate free. We show that the number of samples required for good performance is independent of the number of pairs available, which is a quadratic function of the positive and negative instances. Extensive experiments show the practical utility of the proposed method.


An End-to-End Conversational Second Screen Application for TV Program Discovery

AI Magazine

Our goal is to share with the community the breadth of artificial intelligence (AI) and natural language (NL) technologies required to develop such an application along with learnings from target end-users. We then present the architecture of our application along with the main AI and NL components, which were developed over multiple phases. The first phase focuses on enabling core functionality such as effectively finding programs matching the user's intent. The second phase focuses on enabling dialog with the user.


An End-to-End Conversational Second Screen Application for TV Program Discovery

AI Magazine

In this article, we report on a multiphase R&D effort to develop a conversational second screen application for TV program discovery. Our goal is to share with the community the breadth of artificial intelligence (AI) and natural language (NL) technologies required to develop such an application along with learnings from target end-users. We first give an overview of our application from the perspective of the end-user. We then present the architecture of our application along with the main AI and NL components, which were developed over multiple phases. The first phase focuses on enabling core functionality such as effectively finding programs matching the user’s intent. The second phase focuses on enabling dialog with the user. Finally, we present two user studies, corresponding to these two phases. The results from both studies demonstrate the effectiveness of our application in the target domain.


Mining Large-Scale Knowledge Graphs to Discover Inference Paths for Query Expansion in NLIDB

AAAI Conferences

In this paper, we present an approach to mine large-scale knowledge graphs to discover inference paths for query expansion in NLIDB (Natural Language Interface to Databases). Addressing this problem is important in order for NLIDB applications to effectively handle relevant concepts in the domain of interest that do not correspond to any structured fields in the target database. We also present preliminary observations on the performance of our approach applied to Freebase, and conclude with discussions on next steps to further evaluate and extend our approach.