Rastogi, Charvi
Multi-turn Evaluation of Anthropomorphic Behaviours in Large Language Models
Ibrahim, Lujain, Akbulut, Canfer, Elasmar, Rasmi, Rastogi, Charvi, Kahng, Minsuk, Morris, Meredith Ringel, McKee, Kevin R., Rieser, Verena, Shanahan, Murray, Weidinger, Laura
The tendency of users to anthropomorphise large language models (LLMs) is of growing interest to AI developers, researchers, and policy-makers. Here, we present a novel method for empirically evaluating anthropomorphic LLM behaviours in realistic and varied settings. Going beyond single-turn static benchmarks, we contribute three methodological advances in state-of-the-art (SOTA) LLM evaluation. First, we develop a multi-turn evaluation of 14 anthropomorphic behaviours. Second, we present a scalable, automated approach by employing simulations of user interactions. Third, we conduct an interactive, large-scale human subject study (N=1101) to validate that the model behaviours we measure predict real users' anthropomorphic perceptions. We find that all SOTA LLMs evaluated exhibit similar behaviours, characterised by relationship-building (e.g., empathy and validation) and first-person pronoun use, and that the majority of behaviours only first occur after multiple turns. Our work lays an empirical foundation for investigating how design choices influence anthropomorphic model behaviours and for progressing the ethical debate on the desirability of these behaviours. It also showcases the necessity of multi-turn evaluations for complex social phenomena in human-AI interaction.
Insights on Disagreement Patterns in Multimodal Safety Perception across Diverse Rater Groups
Rastogi, Charvi, Teh, Tian Huey, Mishra, Pushkar, Patel, Roma, Ashwood, Zoe, Davani, Aida Mostafazadeh, Diaz, Mark, Paganini, Michela, Parrish, Alicia, Wang, Ding, Prabhakaran, Vinodkumar, Aroyo, Lora, Rieser, Verena
AI systems crucially rely on human ratings, but these ratings are often aggregated, obscuring the inherent diversity of perspectives in real-world phenomenon. This is particularly concerning when evaluating the safety of generative AI, where perceptions and associated harms can vary significantly across socio-cultural contexts. While recent research has studied the impact of demographic differences on annotating text, there is limited understanding of how these subjective variations affect multimodal safety in generative AI. To address this, we conduct a large-scale study employing highly-parallel safety ratings of about 1000 text-to-image (T2I) generations from a demographically diverse rater pool of 630 raters balanced across 30 intersectional groups across age, gender, and ethnicity. Our study shows that (1) there are significant differences across demographic groups (including intersectional groups) on how severe they assess the harm to be, and that these differences vary across different types of safety violations, (2) the diverse rater pool captures annotation patterns that are substantially different from expert raters trained on specific set of safety policies, and (3) the differences we observe in T2I safety are distinct from previously documented group level differences in text-based safety tasks. To further understand these varying perspectives, we conduct a qualitative analysis of the open-ended explanations provided by raters. This analysis reveals core differences into the reasons why different groups perceive harms in T2I generations. Our findings underscore the critical need for incorporating diverse perspectives into safety evaluation of generative AI ensuring these systems are truly inclusive and reflect the values of all users.
Adversarial Nibbler: An Open Red-Teaming Method for Identifying Diverse Harms in Text-to-Image Generation
Quaye, Jessica, Parrish, Alicia, Inel, Oana, Rastogi, Charvi, Kirk, Hannah Rose, Kahng, Minsuk, van Liemt, Erin, Bartolo, Max, Tsang, Jess, White, Justin, Clement, Nathan, Mosquera, Rafael, Ciro, Juan, Reddi, Vijay Janapa, Aroyo, Lora
With the rise of text-to-image (T2I) generative AI models reaching wide audiences, it is critical to evaluate model robustness against non-obvious attacks to mitigate the generation of offensive images. By focusing on ``implicitly adversarial'' prompts (those that trigger T2I models to generate unsafe images for non-obvious reasons), we isolate a set of difficult safety issues that human creativity is well-suited to uncover. To this end, we built the Adversarial Nibbler Challenge, a red-teaming methodology for crowdsourcing a diverse set of implicitly adversarial prompts. We have assembled a suite of state-of-the-art T2I models, employed a simple user interface to identify and annotate harms, and engaged diverse populations to capture long-tail safety issues that may be overlooked in standard testing. The challenge is run in consecutive rounds to enable a sustained discovery and analysis of safety pitfalls in T2I models. In this paper, we present an in-depth account of our methodology, a systematic study of novel attack strategies and discussion of safety failures revealed by challenge participants. We also release a companion visualization tool for easy exploration and derivation of insights from the dataset. The first challenge round resulted in over 10k prompt-image pairs with machine annotations for safety. A subset of 1.5k samples contains rich human annotations of harm types and attack styles. We find that 14% of images that humans consider harmful are mislabeled as ``safe'' by machines. We have identified new attack strategies that highlight the complexity of ensuring T2I model robustness. Our findings emphasize the necessity of continual auditing and adaptation as new vulnerabilities emerge. We are confident that this work will enable proactive, iterative safety assessments and promote responsible development of T2I models.
Supporting Human-AI Collaboration in Auditing LLMs with LLMs
Rastogi, Charvi, Ribeiro, Marco Tulio, King, Nicholas, Nori, Harsha, Amershi, Saleema
Large language models are becoming increasingly pervasive and ubiquitous in society via deployment in sociotechnical systems. Yet these language models, be it for classification or generation, have been shown to be biased and behave irresponsibly, causing harm to people at scale. It is crucial to audit these language models rigorously. Existing auditing tools leverage either or both humans and AI to find failures. In this work, we draw upon literature in human-AI collaboration and sensemaking, and conduct interviews with research experts in safe and fair AI, to build upon the auditing tool: AdaTest (Ribeiro and Lundberg, 2022), which is powered by a generative large language model (LLM). Through the design process we highlight the importance of sensemaking and human-AI communication to leverage complementary strengths of humans and generative models in collaborative auditing. To evaluate the effectiveness of the augmented tool, AdaTest++, we conduct user studies with participants auditing two commercial language models: OpenAI's GPT-3 and Azure's sentiment analysis model. Qualitative analysis shows that AdaTest++ effectively leverages human strengths such as schematization, hypothesis formation and testing. Further, with our tool, participants identified a variety of failures modes, covering 26 different topics over 2 tasks, that have been shown before in formal audits and also those previously under-reported.
A Taxonomy of Human and ML Strengths in Decision-Making to Investigate Human-ML Complementarity
Rastogi, Charvi, Leqi, Liu, Holstein, Kenneth, Heidari, Hoda
Hybrid human-ML systems increasingly make consequential decisions in a wide range of domains. These systems are often introduced with the expectation that the combined human-ML system will achieve complementary performance, that is, the combined decision-making system will be an improvement compared with either decision-making agent in isolation. However, empirical results have been mixed, and existing research rarely articulates the sources and mechanisms by which complementary performance is expected to arise. Our goal in this work is to provide conceptual tools to advance the way researchers reason and communicate about human-ML complementarity. Drawing upon prior literature in human psychology, machine learning, and human-computer interaction, we propose a taxonomy characterizing distinct ways in which human and ML-based decision-making can differ. In doing so, we conceptually map potential mechanisms by which combining human and ML decision-making may yield complementary performance, developing a language for the research community to reason about design of hybrid systems in any decision-making domain. To illustrate how our taxonomy can be used to investigate complementarity, we provide a mathematical aggregation framework to examine enabling conditions for complementarity. Through synthetic simulations, we demonstrate how this framework can be used to explore specific aspects of our taxonomy and shed light on the optimal mechanisms for combining human-ML judgments
DataPerf: Benchmarks for Data-Centric AI Development
Mazumder, Mark, Banbury, Colby, Yao, Xiaozhe, Karlaลก, Bojan, Rojas, William Gaviria, Diamos, Sudnya, Diamos, Greg, He, Lynn, Parrish, Alicia, Kirk, Hannah Rose, Quaye, Jessica, Rastogi, Charvi, Kiela, Douwe, Jurado, David, Kanter, David, Mosquera, Rafael, Ciro, Juan, Aroyo, Lora, Acun, Bilge, Chen, Lingjiao, Raje, Mehul Smriti, Bartolo, Max, Eyuboglu, Sabri, Ghorbani, Amirata, Goodman, Emmett, Inel, Oana, Kane, Tariq, Kirkpatrick, Christine R., Kuo, Tzu-Sheng, Mueller, Jonas, Thrush, Tristan, Vanschoren, Joaquin, Warren, Margaret, Williams, Adina, Yeung, Serena, Ardalani, Newsha, Paritosh, Praveen, Bat-Leah, Lilith, Zhang, Ce, Zou, James, Wu, Carole-Jean, Coleman, Cody, Ng, Andrew, Mattson, Peter, Reddi, Vijay Janapa
Machine learning research has long focused on models rather than datasets, and prominent datasets are used for common ML tasks without regard to the breadth, difficulty, and faithfulness of the underlying problems. Neglecting the fundamental importance of data has given rise to inaccuracy, bias, and fragility in real-world applications, and research is hindered by saturation across existing dataset benchmarks. In response, we present DataPerf, a community-led benchmark suite for evaluating ML datasets and data-centric algorithms. We aim to foster innovation in data-centric AI through competition, comparability, and reproducibility. We enable the ML community to iterate on datasets, instead of just architectures, and we provide an open, online platform with multiple rounds of challenges to support this iterative development. The first iteration of DataPerf contains five benchmarks covering a wide spectrum of data-centric techniques, tasks, and modalities in vision, speech, acquisition, debugging, and diffusion prompting, and we support hosting new contributed benchmarks from the community. The benchmarks, online evaluation platform, and baseline implementations are open source, and the MLCommons Association will maintain DataPerf to ensure long-term benefits to academia and industry.
Adversarial Nibbler: A Data-Centric Challenge for Improving the Safety of Text-to-Image Models
Parrish, Alicia, Kirk, Hannah Rose, Quaye, Jessica, Rastogi, Charvi, Bartolo, Max, Inel, Oana, Ciro, Juan, Mosquera, Rafael, Howard, Addison, Cukierski, Will, Sculley, D., Reddi, Vijay Janapa, Aroyo, Lora
The generative AI revolution in recent years has been spurred by an expansion in compute power and data quantity, which together enable extensive pre-training of powerful text-to-image (T2I) models. With their greater capabilities to generate realistic and creative content, these T2I models like DALL-E, MidJourney, Imagen or Stable Diffusion are reaching ever wider audiences. Any unsafe behaviors inherited from pretraining on uncurated internet-scraped datasets thus have the potential to cause wide-reaching harm, for example, through generated images which are violent, sexually explicit, or contain biased and derogatory stereotypes. Despite this risk of harm, we lack systematic and structured evaluation datasets to scrutinize model behavior, especially adversarial attacks that bypass existing safety filters. A typical bottleneck in safety evaluation is achieving a wide coverage of different types of challenging examples in the evaluation set, i.e., identifying 'unknown unknowns' or long-tail problems. To address this need, we introduce the Adversarial Nibbler challenge. The goal of this challenge is to crowdsource a diverse set of failure modes and reward challenge participants for successfully finding safety vulnerabilities in current state-of-the-art T2I models. Ultimately, we aim to provide greater awareness of these issues and assist developers in improving the future safety and reliability of generative AI models. Adversarial Nibbler is a data-centric challenge, part of the DataPerf challenge suite, organized and supported by Kaggle and MLCommons.
How do Authors' Perceptions of their Papers Compare with Co-authors' Perceptions and Peer-review Decisions?
Rastogi, Charvi, Stelmakh, Ivan, Beygelzimer, Alina, Dauphin, Yann N., Liang, Percy, Vaughan, Jennifer Wortman, Xue, Zhenyu, Daumรฉ, Hal III, Pierson, Emma, Shah, Nihar B.
How do author perceptions match up to the outcomes of the peer-review process and perceptions of others? In a top-tier computer science conference (NeurIPS 2021) with more than 23,000 submitting authors and 9,000 submitted papers, we survey the authors on three questions: (i) their predicted probability of acceptance for each of their papers, (ii) their perceived ranking of their own papers based on scientific contribution, and (iii) the change in their perception about their own papers after seeing the reviews. The salient results are: (1) Authors have roughly a three-fold overestimate of the acceptance probability of their papers: The median prediction is 70% for an approximately 25% acceptance rate. (2) Female authors exhibit a marginally higher (statistically significant) miscalibration than male authors; predictions of authors invited to serve as meta-reviewers or reviewers are similarly calibrated, but better than authors who were not invited to review. (3) Authors' relative ranking of scientific contribution of two submissions they made generally agree (93%) with their predicted acceptance probabilities, but there is a notable 7% responses where authors think their better paper will face a worse outcome. (4) The author-provided rankings disagreed with the peer-review decisions about a third of the time; when co-authors ranked their jointly authored papers, co-authors disagreed at a similar rate -- about a third of the time. (5) At least 30% of respondents of both accepted and rejected papers said that their perception of their own paper improved after the review process. The stakeholders in peer review should take these findings into account in setting their expectations from peer review.
Two-Sample Testing on Ranked Preference Data and the Role of Modeling Assumptions
Rastogi, Charvi, Balakrishnan, Sivaraman, Shah, Nihar B., Singh, Aarti
A number of applications require two-sample testing on ranked preference data. For instance, in crowdsourcing, there is a long-standing question of whether pairwise comparison data provided by people is distributed similar to ratings-converted-to-comparisons. Other examples include sports data analysis and peer grading. In this paper, we design two-sample tests for pairwise comparison data and ranking data. For our two-sample test for pairwise comparison data, we establish an upper bound on the sample complexity required to correctly distinguish between the distributions of the two sets of samples. Our test requires essentially no assumptions on the distributions. We then prove complementary lower bounds showing that our results are tight (in the minimax sense) up to constant factors. We investigate the role of modeling assumptions by proving lower bounds for a range of pairwise comparison models (WST, MST,SST, parameter-based such as BTL and Thurstone). We also provide testing algorithms and associated sample complexity bounds for the problem of two-sample testing with partial (or total) ranking data.Furthermore, we empirically evaluate our results via extensive simulations as well as two real-world datasets consisting of pairwise comparisons. By applying our two-sample test on real-world pairwise comparison data, we conclude that ratings and rankings provided by people are indeed distributed differently. On the other hand, our test recognizes no significant difference in the relative performance of European football teams across two seasons. Finally, we apply our two-sample test on a real-world partial and total ranking dataset and find a statistically significant difference in Sushi preferences across demographic divisions based on gender, age and region of residence.
A Spectral Approach for the Design of Experiments: Design, Analysis and Algorithms
Kailkhura, Bhavya, Thiagarajan, Jayaraman J., Rastogi, Charvi, Varshney, Pramod K., Bremer, Peer-Timo
This paper proposes a new approach to construct high quality space-filling sample designs. First, we propose a novel technique to quantify the space-filling property and optimally trade-off uniformity and randomness in sample designs in arbitrary dimensions. Second, we connect the proposed metric (defined in the spatial domain) to the objective measure of the design performance (defined in the spectral domain). This connection serves as an analytic framework for evaluating the qualitative properties of space-filling designs in general. Using the theoretical insights provided by this spatial-spectral analysis, we derive the notion of optimal space-filling designs, which we refer to as space-filling spectral designs. Third, we propose an efficient estimator to evaluate the space-filling properties of sample designs in arbitrary dimensions and use it to develop an optimization framework to generate high quality space-filling designs. Finally, we carry out a detailed performance comparison on two different applications in 2 to 6 dimensions: a) image reconstruction and b) surrogate modeling on several benchmark optimization functions and an inertial confinement fusion (ICF) simulation code. We demonstrate that the propose spectral designs significantly outperform existing approaches especially in high dimensions.