Goto

Collaborating Authors

 Rao, Weixiong


Collaborative State Fusion in Partially Known Multi-agent Environments

arXiv.org Artificial Intelligence

In this paper, we study the collaborative state fusion problem in a multi-agent environment, where mobile agents collaborate to track movable targets. Due to the limited sensing range and potential errors of on-board sensors, it is necessary to aggregate individual observations to provide target state fusion for better target state estimation. Existing schemes do not perform well due to (1) impractical assumption of the fully known prior target state-space model and (2) observation outliers from individual sensors. To address the issues, we propose a two-stage collaborative fusion framework, namely \underline{L}earnable Weighted R\underline{o}bust \underline{F}usion (\textsf{LoF}). \textsf{LoF} combines a local state estimator (e.g., Kalman Filter) with a learnable weight generator to address the mismatch between the prior state-space model and underlying patterns of moving targets. Moreover, given observation outliers, we develop a time-series soft medoid(TSM) scheme to perform robust fusion. We evaluate \textsf{LoF} in a collaborative detection simulation environment with promising results. In an example setting with 4 agents and 2 targets, \textsf{LoF} leads to a 9.1\% higher fusion gain compared to the state-of-the-art.


Transfer Learning-Based Outdoor Position Recovery with Telco Data

arXiv.org Machine Learning

Telecommunication (Telco) outdoor position recovery aims to localize outdoor mobile devices by leveraging measurement report (MR) data. Unfortunately, Telco position recovery requires sufficient amount of MR samples across different areas and suffers from high data collection cost. For an area with scarce MR samples, it is hard to achieve good accuracy. In this paper, by leveraging the recently developed transfer learning techniques, we design a novel Telco position recovery framework, called TLoc, to transfer good models in the carefully selected source domains (those fine-grained small subareas) to a target one which originally suffers from poor localization accuracy. Specifically, TLoc introduces three dedicated components: 1) a new coordinate space to divide an area of interest into smaller domains, 2) a similarity measurement to select best source domains, and 3) an adaptation of an existing transfer learning approach. To the best of our knowledge, TLoc is the first framework that demonstrates the efficacy of applying transfer learning in the Telco outdoor position recovery. To exemplify, on the 2G GSM and 4G LTE MR datasets in Shanghai, TLoc outperforms a nontransfer approach by 27.58% and 26.12% less median errors, and further leads to 47.77% and 49.22% less median errors than a recent fingerprinting approach NBL.