Goto

Collaborating Authors

 Rao, Jun


CommonIT: Commonality-Aware Instruction Tuning for Large Language Models via Data Partitions

arXiv.org Artificial Intelligence

With instruction tuning, Large Language Models (LLMs) can enhance their ability to adhere to commands. Diverging from most works focusing on data mixing, our study concentrates on enhancing the model's capabilities from the perspective of data sampling during training. Drawing inspiration from the human learning process, where it is generally easier to master solutions to similar topics through focused practice on a single type of topic, we introduce a novel instruction tuning strategy termed CommonIT: Commonality-aware Instruction Tuning. Specifically, we cluster instruction datasets into distinct groups with three proposed metrics (Task, Embedding and Length). We ensure each training mini-batch, or "partition", consists solely of data from a single group, which brings about both data randomness across mini-batches and intra-batch data similarity. Rigorous testing on LLaMa models demonstrates CommonIT's effectiveness in enhancing the instruction-following capabilities of LLMs through IT datasets (FLAN, CoT, and Alpaca) and models (LLaMa2-7B, Qwen2-7B, LLaMa 13B, and BLOOM 7B). CommonIT consistently boosts an average improvement of 2.1\% on the general domain (i.e., the average score of Knowledge, Reasoning, Multilinguality and Coding) with the Length metric, and 5.2\% on the special domain (i.e., GSM, Openfunctions and Code) with the Task metric, and 3.8\% on the specific tasks (i.e., MMLU) with the Embedding metric. Code is available at \url{https://github.com/raojay7/CommonIT}.


3AM: An Ambiguity-Aware Multi-Modal Machine Translation Dataset

arXiv.org Artificial Intelligence

Multimodal machine translation (MMT) is a challenging task that seeks to improve translation quality by incorporating visual information. However, recent studies have indicated that the visual information provided by existing MMT datasets is insufficient, causing models to disregard it and overestimate their capabilities. This issue presents a significant obstacle to the development of MMT research. This paper presents a novel solution to this issue by introducing 3AM, an ambiguity-aware MMT dataset comprising 26,000 parallel sentence pairs in English and Chinese, each with corresponding images. Our dataset is specifically designed to include more ambiguity and a greater variety of both captions and images than other MMT datasets. We utilize a word sense disambiguation model to select ambiguous data from vision-and-language datasets, resulting in a more challenging dataset. We further benchmark several state-of-the-art MMT models on our proposed dataset. Experimental results show that MMT models trained on our dataset exhibit a greater ability to exploit visual information than those trained on other MMT datasets. Our work provides a valuable resource for researchers in the field of multimodal learning and encourages further exploration in this area. The data, code and scripts are freely available at https://github.com/MaxyLee/3AM.


Can Linguistic Knowledge Improve Multimodal Alignment in Vision-Language Pretraining?

arXiv.org Artificial Intelligence

The multimedia community has shown a significant interest in perceiving and representing the physical world with multimodal pretrained neural network models, and among them, the visual-language pertaining (VLP) is, currently, the most captivating topic. However, there have been few endeavors dedicated to the exploration of 1) whether essential linguistic knowledge (e.g., semantics and syntax) can be extracted during VLP, and 2) how such linguistic knowledge impact or enhance the multimodal alignment. In response, here we aim to elucidate the impact of comprehensive linguistic knowledge, including semantic expression and syntactic structure, on multimodal alignment. Specifically, we design and release the SNARE, the first large-scale multimodal alignment probing benchmark, to detect the vital linguistic components, e.g., lexical, semantic, and syntax knowledge, containing four tasks: Semantic structure, Negation logic, Attribute ownership, and Relationship composition. Based on our proposed probing benchmarks, our holistic analyses of five advanced VLP models illustrate that the VLP model: i) shows insensitivity towards complex syntax structures and relies on content words for sentence comprehension; ii) demonstrates limited comprehension of combinations between sentences and negations; iii) faces challenges in determining the presence of actions or spatial relationships within visual information and struggles with verifying the correctness of triple combinations. We make our benchmark and code available at \url{https://github.com/WangFei-2019/SNARE/}.