Randle, Dylan
MuST: Multi-Head Skill Transformer for Long-Horizon Dexterous Manipulation with Skill Progress
Gao, Kai, Wang, Fan, Aduh, Erica, Randle, Dylan, Shi, Jane
Robot picking and packing tasks require dexterous manipulation skills, such as rearranging objects to establish a good grasping pose, or placing and pushing items to achieve tight packing. These tasks are challenging for robots due to the complexity and variability of the required actions. To tackle the difficulty of learning and executing long-horizon tasks, we propose a novel framework called the Multi-Head Skill Transformer (MuST). This model is designed to learn and sequentially chain together multiple motion primitives (skills), enabling robots to perform complex sequences of actions effectively. MuST introduces a "progress value" for each skill, guiding the robot on which skill to execute next and ensuring smooth transitions between skills. Additionally, our model is capable of expanding its skill set and managing various sequences of sub-tasks efficiently. Extensive experiments in both simulated and real-world environments demonstrate that MuST significantly enhances the robot's ability to perform long-horizon dexterous manipulation tasks.
Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction
Chen, Peter Yichen, Liu, Chao, Ma, Pingchuan, Eastman, John, Rus, Daniela, Randle, Dylan, Ivanov, Yuri, Matusik, Wojciech
Differentiable simulation has become a powerful tool for system identification. While prior work has focused on identifying robot properties using robot-specific data or object properties using object-specific data, our approach calibrates object properties by using information from the robot, without relying on data from the object itself. Specifically, we utilize robot joint encoder information, which is commonly available in standard robotic systems. Our key observation is that by analyzing the robot's reactions to manipulated objects, we can infer properties of those objects, such as inertia and softness. Leveraging this insight, we develop differentiable simulations of robot-object interactions to inversely identify the properties of the manipulated objects. Our approach relies solely on proprioception -- the robot's internal sensing capabilities -- and does not require external measurement tools or vision-based tracking systems. This general method is applicable to any articulated robot and requires only joint position information. We demonstrate the effectiveness of our method on a low-cost robotic platform, achieving accurate mass and elastic modulus estimations of manipulated objects with just a few seconds of computation on a laptop.
Unsupervised Learning of Solutions to Differential Equations with Generative Adversarial Networks
Randle, Dylan, Protopapas, Pavlos, Sondak, David
Solutions to differential equations are of significant scientific and engineering relevance. Recently, there has been a growing interest in solving differential equations with neural networks. This work develops a novel method for solving differential equations with unsupervised neural networks that applies Generative Adversarial Networks (GANs) to \emph{learn the loss function} for optimizing the neural network. We present empirical results showing that our method, which we call Differential Equation GAN (DEQGAN), can obtain multiple orders of magnitude lower mean squared errors than an alternative unsupervised neural network method based on (squared) $L_2$, $L_1$, and Huber loss functions. Moreover, we show that DEQGAN achieves solution accuracy that is competitive with traditional numerical methods. Finally, we analyze the stability of our approach and find it to be sensitive to the selection of hyperparameters, which we provide in the appendix. Code available at https://github.com/dylanrandle/denn. Please address any electronic correspondence to dylanrandle@alumni.harvard.edu.