Goto

Collaborating Authors

 Rambhatla, Sai Saketh


Diffusion Autoencoders are Scalable Image Tokenizers

arXiv.org Artificial Intelligence

Tokenizing images into compact visual representations is a key step in learning efficient and high-quality image generative models. We present a simple diffusion tokenizer (DiTo) that learns compact visual representations for image generation models. Our key insight is that a single learning objective, diffusion L2 loss, can be used for training scalable image tokenizers. Since diffusion is already widely used for image generation, our insight greatly simplifies training such tokenizers. In contrast, current state-of-the-art tokenizers rely on an empirically found combination of heuristics and losses, thus requiring a complex training recipe that relies on non-trivially balancing different losses and pretrained supervised models. We show design decisions, along with theoretical grounding, that enable us to scale DiTo for learning competitive image representations. Our results show that DiTo is a simpler, scalable, and self-supervised alternative to the current state-of-the-art image tokenizer which is supervised. DiTo achieves competitive or better quality than state-of-the-art in image reconstruction and downstream image generation tasks.


Movie Gen: A Cast of Media Foundation Models

arXiv.org Artificial Intelligence

We present Movie Gen, a cast of foundation models that generates high-quality, 1080p HD videos with different aspect ratios and synchronized audio. We also show additional capabilities such as precise instruction-based video editing and generation of personalized videos based on a user's image. Our models set a new state-of-the-art on multiple tasks: text-to-video synthesis, video personalization, video editing, video-to-audio generation, and text-to-audio generation. Our largest video generation model is a 30B parameter transformer trained with a maximum context length of 73K video tokens, corresponding to a generated video of 16 seconds at 16 frames-per-second. We show multiple technical innovations and simplifications on the architecture, latent spaces, training objectives and recipes, data curation, evaluation protocols, parallelization techniques, and inference optimizations that allow us to reap the benefits of scaling pre-training data, model size, and training compute for training large scale media generation models. We hope this paper helps the research community to accelerate progress and innovation in media generation models. All videos from this paper are available at https://go.fb.me/MovieGenResearchVideos.


InstanceDiffusion: Instance-level Control for Image Generation

arXiv.org Artificial Intelligence

Text-to-image diffusion models produce high quality images but do not offer control over individual instances in the image. We introduce InstanceDiffusion that adds precise instance-level control to text-to-image diffusion models. InstanceDiffusion supports free-form language conditions per instance and allows flexible ways to specify instance locations such as simple single points, scribbles, bounding boxes or intricate instance segmentation masks, and combinations thereof. We propose three major changes to text-to-image models that enable precise instance-level control. Our UniFusion block enables instance-level conditions for text-to-image models, the ScaleU block improves image fidelity, and our Multi-instance Sampler improves generations for multiple instances. InstanceDiffusion significantly surpasses specialized state-of-the-art models for each location condition. Notably, on the COCO dataset, we outperform previous state-of-the-art by 20.4% AP$_{50}^\text{box}$ for box inputs, and 25.4% IoU for mask inputs.


Emu Video: Factorizing Text-to-Video Generation by Explicit Image Conditioning

arXiv.org Artificial Intelligence

We present Emu Video, a text-to-video generation model that factorizes the generation into two steps: first generating an image conditioned on the text, and then generating a video conditioned on the text and the generated image. We identify critical design decisions--adjusted noise schedules for diffusion, and multi-stage training--that enable us to directly generate high quality and high resolution videos, without requiring a deep cascade of models as in prior work. In human evaluations, our generated videos are strongly preferred in quality compared to all prior work--81% vs. Google's Imagen Video, 90% vs. Nvidia's PYOCO, and 96% vs. Meta's Make-A-Video. Our model outperforms commercial solutions such as RunwayML's Gen2 and Pika Labs. Finally, our factorizing approach naturally lends itself to animating images based on a user's text prompt, where our generations are preferred 96% over prior work.


SelfEval: Leveraging the discriminative nature of generative models for evaluation

arXiv.org Artificial Intelligence

In this work, we show that text-to-image generative models can be 'inverted' to assess their own text-image understanding capabilities in a completely automated manner. Our method, called SelfEval, uses the generative model to compute the likelihood of real images given text prompts, making the generative model directly applicable to discriminative tasks. Using SelfEval, we repurpose standard datasets created for evaluating multimodal text-image discriminative models to evaluate generative models in a fine-grained manner: assessing their performance on attribute binding, color recognition, counting, shape recognition, spatial understanding. To the best of our knowledge SelfEval is the first automated metric to show a high degree of agreement for measuring text-faithfulness with the gold-standard human evaluations across multiple models and benchmarks. Moreover, SelfEval enables us to evaluate generative models on challenging tasks such as Winoground image-score where they demonstrate competitive performance to discriminative models. We also show severe drawbacks of standard automated metrics such as CLIP-score to measure text faithfulness on benchmarks such as DrawBench, and how SelfEval sidesteps these issues. We hope SelfEval enables easy and reliable automated evaluation for diffusion models.


Self-Denoising Neural Networks for Few Shot Learning

arXiv.org Artificial Intelligence

In this paper, we introduce a new architecture for few shot learning, the task of teaching a neural network from as few as one or five labeled examples. Inspired by the theoretical results of Alaine et al that Denoising Autoencoders refine features to lie closer to the true data manifold, we present a new training scheme that adds noise at multiple stages of an existing neural architecture while simultaneously learning to be robust to this added noise. This architecture, which we call a Self-Denoising Neural Network (SDNN), can be applied easily to most modern convolutional neural architectures, and can be used as a supplement to many existing few-shot learning techniques. We empirically show that SDNNs out-perform previous state-of-the-art methods for few shot image recognition using the Wide-ResNet architecture on the \textit{mini}ImageNet, tiered-ImageNet, and CIFAR-FS few shot learning datasets. We also perform a series of ablation experiments to empirically justify the construction of the SDNN architecture. Finally, we show that SDNNs even improve few shot performance on the task of human action detection in video using experiments on the ActEV SDL Surprise Activities challenge.


The Pursuit of Knowledge: Discovering and Localizing Novel Categories using Dual Memory

arXiv.org Artificial Intelligence

We tackle object category discovery, which is the problem of discovering and localizing novel objects in a large unlabeled dataset. While existing methods show results on datasets with less cluttered scenes and fewer object instances per image, we present our results on the challenging COCO dataset. Moreover, we argue that, rather than discovering new categories from scratch, discovery algorithms can benefit from identifying what is already known and focusing their attention on the unknown. We propose a method to use prior knowledge about certain object categories to discover new categories by leveraging two memory modules, namely Working and Semantic memory. We show the performance of our detector on the COCO minival dataset to demonstrate its in-the-wild capabilities.