Goto

Collaborating Authors

 Ram, Keerthi


Comprehensive Modeling and Question Answering of Cancer Clinical Practice Guidelines using LLMs

arXiv.org Artificial Intelligence

The updated recommendations on diagnostic procedures and treatment pathways for a medical condition are documented as graphical flows in Clinical Practice Guidelines (CPGs). For effective use of the CPGs in helping medical professionals in the treatment decision process, it is necessary to fully capture the guideline knowledge, particularly the contexts and their relationships in the graph. While several existing works have utilized these guidelines to create rule bases for Clinical Decision Support Systems, limited work has been done toward directly capturing the full medical knowledge contained in CPGs. This work proposes an approach to create a contextually enriched, faithful digital representation of National Comprehensive Cancer Network (NCCN) Cancer CPGs in the form of graphs using automated extraction and node & relationship classification. We also implement semantic enrichment of the model by using Large Language Models (LLMs) for node classification, achieving an accuracy of 80.86% and 88.47% with zero-shot learning and few-shot learning, respectively. Additionally, we introduce a methodology for answering natural language questions with constraints to guideline text by leveraging LLMs to extract the relevant subgraph from the guideline knowledge base. By generating natural language answers based on subgraph paths and semantic information, we mitigate the risk of incorrect answers and hallucination associated with LLMs, ensuring factual accuracy in medical domain Question Answering.


A Hybrid-Layered System for Image-Guided Navigation and Robot Assisted Spine Surgery

arXiv.org Artificial Intelligence

In response to the growing demand for precise and affordable solutions for Image-Guided Spine Surgery (IGSS), this paper presents a comprehensive development of a Robot-Assisted and Navigation-Guided IGSS System. The endeavor involves integrating cutting-edge technologies to attain the required surgical precision and limit user radiation exposure, thereby addressing the limitations of manual surgical methods. We propose an IGSS workflow and system architecture employing a hybrid-layered approach, combining modular and integrated system architectures in distinctive layers to develop an affordable system for seamless integration, scalability, and reconfigurability. We developed and integrated the system and extensively tested it on phantoms and cadavers. The proposed system's accuracy using navigation guidance is 1.020 mm, and robot assistance is 1.11 mm on phantoms. Observing a similar performance in cadaveric validation where 84% of screw placements were grade A, 10% were grade B using navigation guidance, 90% were grade A, and 10% were grade B using robot assistance as per the Gertzbein-Robbins scale, proving its efficacy for an IGSS. The evaluated performance is adequate for an IGSS and at par with the existing systems in literature and those commercially available. The user radiation is lower than in the literature, given that the system requires only an average of 3 C-Arm images per pedicle screw placement and verification


SDLFormer: A Sparse and Dense Locality-enhanced Transformer for Accelerated MR Image Reconstruction

arXiv.org Artificial Intelligence

Transformers have emerged as viable alternatives to convolutional neural networks owing to their ability to learn non-local region relationships in the spatial domain. The self-attention mechanism of the transformer enables transformers to capture long-range dependencies in the images, which might be desirable for accelerated MRI image reconstruction as the effect of undersampling is non-local in the image domain. Despite its computational efficiency, the window-based transformers suffer from restricted receptive fields as the dependencies are limited to within the scope of the image windows. We propose a window-based transformer network that integrates dilated attention mechanism and convolution for accelerated MRI image reconstruction. The proposed network consists of dilated and dense neighborhood attention transformers to enhance the distant neighborhood pixel relationship and introduce depth-wise convolutions within the transformer module to learn low-level translation invariant features for accelerated MRI image reconstruction. The proposed model is trained in a self-supervised manner. We perform extensive experiments for multi-coil MRI acceleration for coronal PD, coronal PDFS and axial T2 contrasts with 4x and 5x under-sampling in self-supervised learning based on k-space splitting. We compare our method against other reconstruction architectures and the parallel domain self-supervised learning baseline. Results show that the proposed model exhibits improvement margins of (i) around 1.40 dB in PSNR and around 0.028 in SSIM on average over other architectures (ii) around 1.44 dB in PSNR and around 0.029 in SSIM over parallel domain self-supervised learning. The code is available at https://github.com/rahul-gs-16/sdlformer.git


Automated Knowledge Modeling for Cancer Clinical Practice Guidelines

arXiv.org Artificial Intelligence

Clinical Practice Guidelines (CPGs) for cancer diseases evolve rapidly due to new evidence generated by active research. Currently, CPGs are primarily published in a document format that is ill-suited for managing this developing knowledge. A knowledge model of the guidelines document suitable for programmatic interaction is required. This work proposes an automated method for extraction of knowledge from National Comprehensive Cancer Network (NCCN) CPGs in Oncology and generating a structured model containing the retrieved knowledge. The proposed method was tested using two versions of NCCN Non-Small Cell Lung Cancer (NSCLC) CPG to demonstrate the effectiveness in faithful extraction and modeling of knowledge. Three enrichment strategies using Cancer staging information, Unified Medical Language System (UMLS) Metathesaurus & National Cancer Institute thesaurus (NCIt) concepts, and Node classification are also presented to enhance the model towards enabling programmatic traversal and querying of cancer care guidelines. The Node classification was performed using a Support Vector Machine (SVM) model, achieving a classification accuracy of 0.81 with 10-fold cross-validation.


Generalizing Supervised Deep Learning MRI Reconstruction to Multiple and Unseen Contrasts using Meta-Learning Hypernetworks

arXiv.org Artificial Intelligence

Meta-learning has recently been an emerging data-efficient learning technique for various medical imaging operations and has helped advance contemporary deep learning models. Furthermore, meta-learning enhances the knowledge generalization of the imaging tasks by learning both shared and discriminative weights for various configurations of imaging tasks. However, existing meta-learning models attempt to learn a single set of weight initializations of a neural network that might be restrictive for multimodal data. This work aims to develop a multimodal meta-learning model for image reconstruction, which augments meta-learning with evolutionary capabilities to encompass diverse acquisition settings of multimodal data. Our proposed model called KM-MAML (Kernel Modulation-based Multimodal Meta-Learning), has hypernetworks that evolve to generate mode-specific weights. These weights provide the mode-specific inductive bias for multiple modes by re-calibrating each kernel of the base network for image reconstruction via a low-rank kernel modulation operation. We incorporate gradient-based meta-learning (GBML) in the contextual space to update the weights of the hypernetworks for different modes. The hypernetworks and the reconstruction network in the GBML setting provide discriminative mode-specific features and low-level image features, respectively. Experiments on multi-contrast MRI reconstruction show that our model, (i) exhibits superior reconstruction performance over joint training, other meta-learning methods, and context-specific MRI reconstruction methods, and (ii) better adaptation capabilities with improvement margins of 0.5 dB in PSNR and 0.01 in SSIM. Besides, a representation analysis with U-Net shows that kernel modulation infuses 80% of mode-specific representation changes in the high-resolution layers. Our source code is available at https://github.com/sriprabhar/KM-MAML/.


SFT-KD-Recon: Learning a Student-friendly Teacher for Knowledge Distillation in Magnetic Resonance Image Reconstruction

arXiv.org Artificial Intelligence

Deep cascaded architectures for magnetic resonance imaging (MRI) acceleration have shown remarkable success in providing high-quality reconstruction. However, as the number of cascades increases, the improvements in reconstruction tend to become marginal, indicating possible excess model capacity. Knowledge distillation (KD) is an emerging technique to compress these models, in which a trained deep teacher network is used to distill knowledge to a smaller student network such that the student learns to mimic the behavior of the teacher. Most KD methods focus on effectively training the student with a pre-trained teacher unaware of the student model. We propose SFT-KD-Recon, a student-friendly teacher training approach along with the student as a prior step to KD to make the teacher aware of the structure and capacity of the student and enable aligning the representations of the teacher with the student. In SFT, the teacher is jointly trained with the unfolded branch configurations of the student blocks using three loss terms - teacher-reconstruction loss, student-reconstruction loss, and teacher-student imitation loss, followed by KD of the student. We perform extensive experiments for MRI acceleration in 4x and 5x under-sampling on the brain and cardiac datasets on five KD methods using the proposed approach as a prior step. We consider the DC-CNN architecture and setup teacher as D5C5 (141765 parameters), and student as D3C5 (49285 parameters), denoting a compression of 2.87:1. Results show that (i) our approach consistently improves the KD methods with improved reconstruction performance and image quality, and (ii) the student distilled using our approach is competitive with the teacher, with the performance gap reduced from 0.53 dB to 0.03 dB.


Deep Network for Capacitive ECG Denoising

arXiv.org Machine Learning

Continuous monitoring of cardiac health under free living condition is crucial to provide effective care for patients undergoing post operative recovery and individuals with high cardiac risk like the elderly. Capacitive Electrocardiogram (cECG) is one such technology which allows comfortable and long term monitoring through its ability to measure biopotential in conditions without having skin contact. cECG monitoring can be done using many household objects like chairs, beds and even car seats allowing for seamless monitoring of individuals. This method is unfortunately highly susceptible to motion artifacts which greatly limits its usage in clinical practice. The current use of cECG systems has been limited to performing rhythmic analysis. In this paper we propose a novel end-to-end deep learning architecture to perform the task of denoising capacitive ECG. The proposed network is trained using motion corrupted three channel cECG and a reference LEAD I ECG collected on individuals while driving a car. Further, we also propose a novel joint loss function to apply loss on both signal and frequency domain. We conduct extensive rhythmic analysis on the model predictions and the ground truth. We further evaluate the signal denoising using Mean Square Error(MSE) and Cross Correlation between model predictions and ground truth. We report MSE of 0.167 and Cross Correlation of 0.476. The reported results highlight the feasibility of performing morphological analysis using the filtered cECG. The proposed approach can allow for continuous and comprehensive monitoring of the individuals in free living conditions.


Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation

arXiv.org Machine Learning

Abstract--Glaucoma is a serious ocular disorder for which the screening and diagnosis are carried out by the examination of the optic nerve head (ONH). The color fundus image (CFI) is the most common modality used for ocular screening. In CFI, the central region which is the optic disc and the optic cup region within the disc are examined to determine one of the important cues for glaucoma diagnosis called the optic cup-to-disc ratio (CDR). CDR calculation requires accurate segmentation of optic disc and cup. Another important cue for glaucoma progression is the variation of depth in ONH region. In this work, we first propose a deep learning framework to estimate depth from a single fundus image. For the case of monocular retinal depth estimation, we are also plagued by the labelled data insufficiency. To overcome this problem we adopt the technique of pretraining the deep network where, instead of using a denoising autoencoder, we propose a new pretraining scheme called pseudo-depth reconstruction, which serves as a proxy task for retinal depth estimation. Empirically, we show pseudo-depth reconstruction to be a better proxy task than denoising.