Goto

Collaborating Authors

 Rajmohan, Saravan


Hybrid Retrieval-Augmented Generation for Real-time Composition Assistance

arXiv.org Artificial Intelligence

Retrieval augmented models show promise in enhancing traditional language models by improving their contextual understanding, integrating private data, and reducing hallucination. However, the processing time required for retrieval augmented large language models poses a challenge when applying them to tasks that require real-time responses, such as composition assistance. To overcome this limitation, we propose the Hybrid Retrieval-Augmented Generation (HybridRAG) framework that leverages a hybrid setting that combines both client and cloud models. HybridRAG incorporates retrieval-augmented memory generated asynchronously by a Large Language Model (LLM) in the cloud. By integrating this retrieval augmented memory, the client model acquires the capability to generate highly effective responses, benefiting from the LLM's capabilities. Furthermore, through asynchronous memory integration, the client model is capable of delivering real-time responses to user requests without the need to wait for memory synchronization from the cloud. Our experiments on Wikitext and Pile subsets show that HybridRAG achieves lower latency than a cloud-based retrieval-augmented LLM, while outperforming client-only models in utility.


Diffusion-based Time Series Data Imputation for Microsoft 365

arXiv.org Artificial Intelligence

Reliability is extremely important for large-scale cloud systems like Microsoft 365. Cloud failures such as disk failure, node failure, etc. threaten service reliability, resulting in online service interruptions and economic loss. Existing works focus on predicting cloud failures and proactively taking action before failures happen. However, they suffer from poor data quality like data missing in model training and prediction, which limits the performance. In this paper, we focus on enhancing data quality through data imputation by the proposed Diffusion+, a sample-efficient diffusion model, to impute the missing data efficiently based on the observed data. Our experiments and application practice show that our model contributes to improving the performance of the downstream failure prediction task.


Robust Positive-Unlabeled Learning via Noise Negative Sample Self-correction

arXiv.org Artificial Intelligence

Learning from positive and unlabeled data is known as positive-unlabeled (PU) learning in literature and has attracted much attention in recent years. One common approach in PU learning is to sample a set of pseudo-negatives from the unlabeled data using ad-hoc thresholds so that conventional supervised methods can be applied with both positive and negative samples. Owing to the label uncertainty among the unlabeled data, errors of misclassifying unlabeled positive samples as negative samples inevitably appear and may even accumulate during the training processes. Those errors often lead to performance degradation and model instability. To mitigate the impact of label uncertainty and improve the robustness of learning with positive and unlabeled data, we propose a new robust PU learning method with a training strategy motivated by the nature of human learning: easy cases should be learned first. Similar intuition has been utilized in curriculum learning to only use easier cases in the early stage of training before introducing more complex cases. Specifically, we utilize a novel ``hardness'' measure to distinguish unlabeled samples with a high chance of being negative from unlabeled samples with large label noise. An iterative training strategy is then implemented to fine-tune the selection of negative samples during the training process in an iterative manner to include more ``easy'' samples in the early stage of training. Extensive experimental validations over a wide range of learning tasks show that this approach can effectively improve the accuracy and stability of learning with positive and unlabeled data. Our code is available at https://github.com/woriazzc/Robust-PU


Introspective Tips: Large Language Model for In-Context Decision Making

arXiv.org Artificial Intelligence

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.


Recommending Root-Cause and Mitigation Steps for Cloud Incidents using Large Language Models

arXiv.org Artificial Intelligence

Incident management for cloud services is a complex process involving several steps and has a huge impact on both service health and developer productivity. On-call engineers require significant amount of domain knowledge and manual effort for root causing and mitigation of production incidents. Recent advances in artificial intelligence has resulted in state-of-the-art large language models like GPT-3.x (both GPT-3.0 and GPT-3.5), which have been used to solve a variety of problems ranging from question answering to text summarization. In this work, we do the first large-scale study to evaluate the effectiveness of these models for helping engineers root cause and mitigate production incidents. We do a rigorous study at Microsoft, on more than 40,000 incidents and compare several large language models in zero-shot, fine-tuned and multi-task setting using semantic and lexical metrics. Lastly, our human evaluation with actual incident owners show the efficacy and future potential of using artificial intelligence for resolving cloud incidents.


Learning Cooperative Oversubscription for Cloud by Chance-Constrained Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Oversubscription is a common practice for improving cloud resource utilization. It allows the cloud service provider to sell more resources than the physical limit, assuming not all users would fully utilize the resources simultaneously. However, how to design an oversubscription policy that improves utilization while satisfying the some safety constraints remains an open problem. Existing methods and industrial practices are over-conservative, ignoring the coordination of diverse resource usage patterns and probabilistic constraints. To address these two limitations, this paper formulates the oversubscription for cloud as a chance-constrained optimization problem and propose an effective Chance Constrained Multi-Agent Reinforcement Learning (C2MARL) method to solve this problem. Specifically, C2MARL reduces the number of constraints by considering their upper bounds and leverages a multi-agent reinforcement learning paradigm to learn a safe and optimal coordination policy. We evaluate our C2MARL on an internal cloud platform and public cloud datasets. Experiments show that our C2MARL outperforms existing methods in improving utilization ($20\%\sim 86\%$) under different levels of safety constraints.