Rahman, Arrasy
HyperMARL: Adaptive Hypernetworks for Multi-Agent RL
Tessera, Kale-ab Abebe, Rahman, Arrasy, Albrecht, Stefano V.
Balancing individual specialisation and shared behaviours is a critical challenge in multi-agent reinforcement learning (MARL). Existing methods typically focus on encouraging diversity or leveraging shared representations. Full parameter sharing (FuPS) improves sample efficiency but struggles to learn diverse behaviours when required, while no parameter sharing (NoPS) enables diversity but is computationally expensive and sample inefficient. To address these challenges, we introduce HyperMARL, a novel approach using hypernetworks to balance efficiency and specialisation. HyperMARL generates agent-specific actor and critic parameters, enabling agents to adaptively exhibit diverse or homogeneous behaviours as needed, without modifying the learning objective or requiring prior knowledge of the optimal diversity. Furthermore, HyperMARL decouples agent-specific and state-based gradients, which empirically correlates with reduced policy gradient variance, potentially offering insights into its ability to capture diverse behaviours. Across MARL benchmarks requiring homogeneous, heterogeneous, or mixed behaviours, HyperMARL consistently matches or outperforms FuPS, NoPS, and diversity-focused methods, achieving NoPS-level diversity with a shared architecture. These results highlight the potential of hypernetworks as a versatile approach to the trade-off between specialisation and shared behaviours in MARL.
N-Agent Ad Hoc Teamwork
Wang, Caroline, Rahman, Arrasy, Durugkar, Ishan, Liebman, Elad, Stone, Peter
Current approaches to learning cooperative behaviors in multi-agent settings assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls \textit{all} agents in the scenario, while in ad hoc teamwork, the learning algorithm usually assumes control over only a $\textit{single}$ agent in the scenario. However, many cooperative settings in the real world are much less restrictive. For example, in an autonomous driving scenario, a company might train its cars with the same learning algorithm, yet once on the road, these cars must cooperate with cars from another company. Towards generalizing the class of scenarios that cooperative learning methods can address, we introduce $N$-agent ad hoc teamwork, in which a set of autonomous agents must interact and cooperate with dynamically varying numbers and types of teammates at evaluation time. This paper formalizes the problem, and proposes the $\textit{Policy Optimization with Agent Modelling}$ (POAM) algorithm. POAM is a policy gradient, multi-agent reinforcement learning approach to the NAHT problem, that enables adaptation to diverse teammate behaviors by learning representations of teammate behaviors. Empirical evaluation on StarCraft II tasks shows that POAM improves cooperative task returns compared to baseline approaches, and enables out-of-distribution generalization to unseen teammates.
Minimum Coverage Sets for Training Robust Ad Hoc Teamwork Agents
Rahman, Arrasy, Cui, Jiaxun, Stone, Peter
Robustly cooperating with unseen agents and human partners presents significant challenges due to the diverse cooperative conventions these partners may adopt. Existing Ad Hoc Teamwork (AHT) methods address this challenge by training an agent with a population of diverse teammate policies obtained through maximizing specific diversity metrics. However, prior heuristic-based diversity metrics do not always maximize the agent's robustness in all cooperative problems. In this work, we first propose that maximizing an AHT agent's robustness requires it to emulate policies in the minimum coverage set (MCS), the set of best-response policies to any partner policies in the environment. We then introduce the L-BRDiv algorithm that generates a set of teammate policies that, when used for AHT training, encourage agents to emulate policies from the MCS. L-BRDiv works by solving a constrained optimization problem to jointly train teammate policies for AHT training and approximating AHT agent policies that are members of the MCS. We empirically demonstrate that L-BRDiv produces more robust AHT agents than state-of-the-art methods in a broader range of two-player cooperative problems without the need for extensive hyperparameter tuning for its objectives. Our study shows that L-BRDiv outperforms the baseline methods by prioritizing discovering distinct members of the MCS instead of repeatedly finding redundant policies.
A General Learning Framework for Open Ad Hoc Teamwork Using Graph-based Policy Learning
Rahman, Arrasy, Carlucho, Ignacio, Hรถpner, Niklas, Albrecht, Stefano V.
Open ad hoc teamwork is the problem of training a single agent to efficiently collaborate with an unknown group of teammates whose composition may change over time. A variable team composition creates challenges for the agent, such as the requirement to adapt to new team dynamics and dealing with changing state vector sizes. These challenges are aggravated in real-world applications in which the controlled agent only has a partial view of the environment. In this work, we develop a class of solutions for open ad hoc teamwork under full and partial observability. We start by developing a solution for the fully observable case that leverages graph neural network architectures to obtain an optimal policy based on reinforcement learning. We then extend this solution to partially observable scenarios by proposing different methodologies that maintain belief estimates over the latent environment states and team composition. These belief estimates are combined with our solution for the fully observable case to compute an agent's optimal policy under partial observability in open ad hoc teamwork. Empirical results demonstrate that our solution can learn efficient policies in open ad hoc teamwork in fully and partially observable cases. Further analysis demonstrates that our methods' success is a result of effectively learning the effects of teammates' actions while also inferring the inherent state of the environment under partial observability.
Generating Teammates for Training Robust Ad Hoc Teamwork Agents via Best-Response Diversity
Rahman, Arrasy, Fosong, Elliot, Carlucho, Ignacio, Albrecht, Stefano V.
Ad hoc teamwork (AHT) is the challenge of designing a robust learner agent that effectively collaborates with unknown teammates without prior coordination mechanisms. Early approaches address the AHT challenge by training the learner with a diverse set of handcrafted teammate policies, usually designed based on an expert's domain knowledge about the policies the learner may encounter. However, implementing teammate policies for training based on domain knowledge is not always feasible. In such cases, recent approaches attempted to improve the robustness of the learner by training it with teammate policies generated by optimising information-theoretic diversity metrics. The problem with optimising existing information-theoretic diversity metrics for teammate policy generation is the emergence of superficially different teammates. When used for AHT training, superficially different teammate behaviours may not improve a learner's robustness during collaboration with unknown teammates. In this paper, we present an automated teammate policy generation method optimising the Best-Response Diversity (BRDiv) metric, which measures diversity based on the compatibility of teammate policies in terms of returns. We evaluate our approach in environments with multiple valid coordination strategies, comparing against methods optimising information-theoretic diversity metrics and an ablation not optimising any diversity metric. Our experiments indicate that optimising BRDiv yields a diverse set of training teammate policies that improve the learner's performance relative to previous teammate generation approaches when collaborating with near-optimal previously unseen teammate policies.
Learning Complex Teamwork Tasks using a Sub-task Curriculum
Fosong, Elliot, Rahman, Arrasy, Carlucho, Ignacio, Albrecht, Stefano V.
Training a team to complete a complex task via multi-agent reinforcement learning can be difficult due to challenges such as policy search in a large policy space, and non-stationarity caused by mutually adapting agents. To facilitate efficient learning of complex multi-agent tasks, we propose an approach which uses an expert-provided curriculum of simpler multi-agent sub-tasks. In each sub-task of the curriculum, a subset of the entire team is trained to acquire sub-task-specific policies. The sub-teams are then merged and transferred to the target task, where their policies are collectively fined tuned to solve the more complex target task. We present MEDoE, a flexible method which identifies situations in the target task where each agent can use its sub-task-specific skills, and uses this information to modulate hyperparameters for learning and exploration during the fine-tuning process. We compare MEDoE to multi-agent reinforcement learning baselines that train from scratch in the full task, and with na\"ive applications of standard multi-agent reinforcement learning techniques for fine-tuning. We show that MEDoE outperforms baselines which train from scratch or use na\"ive fine-tuning approaches, requiring significantly fewer total training timesteps to solve a range of complex teamwork tasks.
Open Ad Hoc Teamwork using Graph-based Policy Learning
Rahman, Arrasy, Hopner, Niklas, Christianos, Filippos, Albrecht, Stefano V.
Ad hoc teamwork is the challenging problem of designing an autonomous agent which can adapt quickly to collaborate with previously unknown teammates. Prior work in this area has focused on closed teams in which the number of agents is fixed. In this work, we consider open teams by allowing agents of varying types to enter and leave the team without prior notification. Our solution builds on graph neural networks to learn agent models and joint action-value decompositions under varying team sizes, which can be trained with reinforcement learning using a discounted returns objective. We demonstrate empirically that our approach effectively models the impact of other agents actions on the controlled agent's returns to produce policies which can robustly adapt to dynamic team composition and is able to effectively generalize to larger teams than were seen during training.
Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement Learning
Papoudakis, Georgios, Christianos, Filippos, Rahman, Arrasy, Albrecht, Stefano V.
Recent developments in deep reinforcement learning are concerned with creating decision-making agents which can perform well in various complex domains. A particular approach which has received increasing attention is multi-agent reinforcement learning, in which multiple agents learn concurrently to coordinate their actions. In such multi-agent environments, additional learning problems arise due to the continually changing decision-making policies of agents. This paper surveys recent works that address the non-stationarity problem in multi-agent deep reinforcement learning. The surveyed methods range from modifications in the training procedure, such as centralized training, to learning representations of the opponent's policy, meta-learning, communication, and decentralized learning. The survey concludes with a list of open problems and possible lines of future research.