Rahimzamani, Arman
Estimators for Multivariate Information Measures in General Probability Spaces
Rahimzamani, Arman, Asnani, Himanshu, Viswanath, Pramod, Kannan, Sreeram
Information theoretic quantities play an important role in various settings in machine learning, including causality testing, structure inference in graphical models, time-series problems, feature selection as well as in providing privacy guarantees. A key quantity of interest is the mutual information and generalizations thereof, including conditional mutual information, multivariate mutual information, total correlation and directed information. While the aforementioned information quantities are well defined in arbitrary probability spaces, existing estimators add or subtract entropies (we term them ฮฃH methods). These methods work only in purely discrete space or purely continuous case since entropy (or differential entropy) is well defined only in that regime. In this paper, we define a general graph divergence measure (GDM),as a measure of incompatibility between the observed distribution and a given graphical model structure. This generalizes the aforementioned information measures and we construct a novel estimator via a coupling trick that directly estimates these multivariate information measures using the Radon-Nikodym derivative. These estimators are proven to be consistent in a general setting which includes several cases where the existing estimators fail, thus providing the only known estimators for the following settings: (1) the data has some discrete and some continuous valued components (2) some (or all) of the components themselves are discrete-continuous mixtures (3) the data is real-valued but does not have a joint density on the entire space, rather is supported on a low-dimensional manifold. We show that our proposed estimators significantly outperform known estimators on synthetic and real datasets.
Estimators for Multivariate Information Measures in General Probability Spaces
Rahimzamani, Arman, Asnani, Himanshu, Viswanath, Pramod, Kannan, Sreeram
Information theoretic quantities play an important role in various settings in machine learning,including causality testing, structure inference in graphical models, time-series problems, feature selection as well as in providing privacy guarantees. A key quantity of interest is the mutual information and generalizations thereof, including conditional mutual information, multivariate mutual information, total correlationand directed information. While the aforementioned information quantities are well defined in arbitrary probability spaces, existing estimators add or subtract entropies (we term them ฮฃH methods). These methods work only in purely discrete space or purely continuous case since entropy (or differential entropy) is well defined only in that regime. In this paper, we define a general graph divergence measure (GDM),as a measure of incompatibility between the observed distribution and a given graphical model structure. This generalizes the aforementioned information measures and we construct anovel estimator via a coupling trick that directly estimates these multivariate information measures using the Radon-Nikodym derivative. These estimators are proven to be consistent in a general setting which includes several cases where the existing estimators fail, thus providing the only known estimators for the following settings: (1) the data has some discrete and some continuous valued components (2) some (or all) of the components themselves are discrete-continuous mixtures (3) the data is real-valued but does not have a joint density on the entire space, rather is supported on a low-dimensional manifold. We show that our proposed estimators significantly outperform known estimators on synthetic and real datasets.
Mimic and Classify : A meta-algorithm for Conditional Independence Testing
Sen, Rajat, Shanmugam, Karthikeyan, Asnani, Himanshu, Rahimzamani, Arman, Kannan, Sreeram
Given independent samples generated from the joint distribution $p(\mathbf{x},\mathbf{y},\mathbf{z})$, we study the problem of Conditional Independence (CI-Testing), i.e., whether the joint equals the CI distribution $p^{CI}(\mathbf{x},\mathbf{y},\mathbf{z})= p(\mathbf{z}) p(\mathbf{y}|\mathbf{z})p(\mathbf{x}|\mathbf{z})$ or not. We cast this problem under the purview of the proposed, provable meta-algorithm, "Mimic and Classify", which is realized in two-steps: (a) Mimic the CI distribution close enough to recover the support, and (b) Classify to distinguish the joint and the CI distribution. Thus, as long as we have a good generative model and a good classifier, we potentially have a sound CI Tester. With this modular paradigm, CI Testing becomes amiable to be handled by state-of-the-art, both generative and classification methods from the modern advances in Deep Learning, which in general can handle issues related to curse of dimensionality and operation in small sample regime. We show intensive numerical experiments on synthetic and real datasets where new mimic methods such conditional GANs, Regression with Neural Nets, outperform the current best CI Testing performance in the literature. Our theoretical results provide analysis on the estimation of null distribution as well as allow for general measures, i.e., when either some of the random variables are discrete and some are continuous or when one or more of them are discrete-continuous mixtures.
Potential Conditional Mutual Information: Estimators, Properties and Applications
Rahimzamani, Arman, Kannan, Sreeram
The conditional mutual information I(X;Y|Z) measures the average information that X and Y contain about each other given Z. This is an important primitive in many learning problems including conditional independence testing, graphical model inference, causal strength estimation and time-series problems. In several applications, it is desirable to have a functional purely of the conditional distribution p_{Y|X,Z} rather than of the joint distribution p_{X,Y,Z}. We define the potential conditional mutual information as the conditional mutual information calculated with a modified joint distribution p_{Y|X,Z} q_{X,Z}, where q_{X,Z} is a potential distribution, fixed airport. We develop K nearest neighbor based estimators for this functional, employing importance sampling, and a coupling trick, and prove the finite k consistency of such an estimator. We demonstrate that the estimator has excellent practical performance and show an application in dynamical system inference.