Goto

Collaborating Authors

 Raghavan, Deepti


Semantic Integrity Constraints: Declarative Guardrails for AI-Augmented Data Processing Systems

arXiv.org Artificial Intelligence

The emergence of AI-augmented Data Processing Systems (DPSs) has introduced powerful semantic operators that extend traditional data management capabilities with LLM-based processing. However, these systems face fundamental reliability (a.k.a. trust) challenges, as LLMs can generate erroneous outputs, limiting their adoption in critical domains. Existing approaches to LLM constraints--ranging from user-defined functions to constrained decoding--are fragmented, imperative, and lack semantics-aware integration into query execution. To address this gap, we introduce Semantic Integrity Constraints (SICs), a novel declarative abstraction that extends traditional database integrity constraints to govern and optimize semantic operators within DPSs. SICs integrate seamlessly into the relational model, allowing users to specify common classes of constraints (e.g., grounding and soundness) while enabling query-aware enforcement and optimization strategies. In this paper, we present the core design of SICs, describe their formal integration into query execution, and detail our conception of grounding constraints, a key SIC class that ensures factual consistency of generated outputs. In addition, we explore novel enforcement mechanisms, combining proactive (constrained decoding) and reactive (validation and recovery) techniques to optimize efficiency and reliability. Our work establishes SICs as a foundational framework for trustworthy, high-performance AI-augmented data processing, paving the way for future research in constraint-driven optimizations, adaptive enforcement, and enterprise-scale deployments.


ALTO: An Efficient Network Orchestrator for Compound AI Systems

arXiv.org Artificial Intelligence

We present ALTO, a network orchestrator for efficiently serving compound AI systems such as pipelines of language models. ALTO achieves high throughput and low latency by taking advantage of an optimization opportunity specific to generative language models: streaming intermediate outputs. As language models produce outputs token by token, ALTO exposes opportunities to stream intermediate outputs between stages when possible. We highlight two new challenges of correctness and load balancing which emerge when streaming intermediate data across distributed pipeline stage instances. We also motivate the need for an aggregation-aware routing interface and distributed prompt-aware scheduling to address these challenges. We demonstrate the impact of ALTO's partial output streaming on a complex chatbot verification pipeline, increasing throughput by up to 3x for a fixed latency target of 4 seconds / request while also reducing tail latency by 1.8x compared to a baseline serving approach.