Rabhi, Sara
BioNeMo Framework: a modular, high-performance library for AI model development in drug discovery
John, Peter St., Lin, Dejun, Binder, Polina, Greaves, Malcolm, Shah, Vega, John, John St., Lange, Adrian, Hsu, Patrick, Illango, Rajesh, Ramanathan, Arvind, Anandkumar, Anima, Brookes, David H, Busia, Akosua, Mahajan, Abhishaike, Malina, Stephen, Prasad, Neha, Sinai, Sam, Edwards, Lindsay, Gaudelet, Thomas, Regep, Cristian, Steinegger, Martin, Rost, Burkhard, Brace, Alexander, Hippe, Kyle, Naef, Luca, Kamata, Keisuke, Armstrong, George, Boyd, Kevin, Cao, Zhonglin, Chou, Han-Yi, Chu, Simon, Costa, Allan dos Santos, Darabi, Sajad, Dawson, Eric, Didi, Kieran, Fu, Cong, Geiger, Mario, Gill, Michelle, Hsu, Darren, Kaushik, Gagan, Korshunova, Maria, Kothen-Hill, Steven, Lee, Youhan, Liu, Meng, Livne, Micha, McClure, Zachary, Mitchell, Jonathan, Moradzadeh, Alireza, Mosafi, Ohad, Nashed, Youssef, Paliwal, Saee, Peng, Yuxing, Rabhi, Sara, Ramezanghorbani, Farhad, Reidenbach, Danny, Ricketts, Camir, Roland, Brian, Shah, Kushal, Shimko, Tyler, Sirelkhatim, Hassan, Srinivasan, Savitha, Stern, Abraham C, Toczydlowska, Dorota, Veccham, Srimukh Prasad, Venanzi, Niccolò Alberto Elia, Vorontsov, Anton, Wilber, Jared, Wilkinson, Isabel, Wong, Wei Jing, Xue, Eva, Ye, Cory, Yu, Xin, Zhang, Yang, Zhou, Guoqing, Zandstein, Becca, Dallago, Christian, Trentini, Bruno, Kucukbenli, Emine, Paliwal, Saee, Rvachov, Timur, Calleja, Eddie, Israeli, Johnny, Clifford, Harry, Haukioja, Risto, Haemel, Nicholas, Tretina, Kyle, Tadimeti, Neha, Costa, Anthony B
Artificial Intelligence models encoding biology and chemistry are opening new routes to high-throughput and high-quality in-silico drug development. However, their training increasingly relies on computational scale, with recent protein language models (pLM) training on hundreds of graphical processing units (GPUs). We introduce the BioNeMo Framework to facilitate the training of computational biology and chemistry AI models across hundreds of GPUs. Its modular design allows the integration of individual components, such as data loaders, into existing workflows and is open to community contributions. We detail technical features of the BioNeMo Framework through use cases such as pLM pre-training and fine-tuning. On 256 NVIDIA A100s, BioNeMo Framework trains a three billion parameter BERT-based pLM on over one trillion tokens in 4.2 days. The BioNeMo Framework is open-source and free for everyone to use.
LlamaRec: Two-Stage Recommendation using Large Language Models for Ranking
Yue, Zhenrui, Rabhi, Sara, Moreira, Gabriel de Souza Pereira, Wang, Dong, Oldridge, Even
Recently, large language models (LLMs) have exhibited significant progress in language understanding and generation. By leveraging textual features, customized LLMs are also applied for recommendation and demonstrate improvements across diverse recommendation scenarios. Yet the majority of existing methods perform training-free recommendation that heavily relies on pretrained knowledge (e.g., movie recommendation). In addition, inference on LLMs is slow due to autoregressive generation, rendering existing methods less effective for real-time recommendation. As such, we propose a two-stage framework using large language models for ranking-based recommendation (LlamaRec). In particular, we use small-scale sequential recommenders to retrieve candidates based on the user interaction history. Then, both history and retrieved items are fed to the LLM in text via a carefully designed prompt template. Instead of generating next-item titles, we adopt a verbalizer-based approach that transforms output logits into probability distributions over the candidate items. Therefore, the proposed LlamaRec can efficiently rank items without generating long text. To validate the effectiveness of the proposed framework, we compare against state-of-the-art baseline methods on benchmark datasets. Our experimental results demonstrate the performance of LlamaRec, which consistently achieves superior performance in both recommendation performance and efficiency.