Rabbat, Michael
Accelerating Neural Network Training: An Analysis of the AlgoPerf Competition
Kasimbeg, Priya, Schneider, Frank, Eschenhagen, Runa, Bae, Juhan, Sastry, Chandramouli Shama, Saroufim, Mark, Feng, Boyuan, Wright, Less, Yang, Edward Z., Nado, Zachary, Medapati, Sourabh, Hennig, Philipp, Rabbat, Michael, Dahl, George E.
The goal of the AlgoPerf: Training Algorithms competition is to evaluate practical speed-ups in neural network training achieved solely by improving the underlying training algorithms. In the external tuning ruleset, submissions must provide workload-agnostic hyperparameter search spaces, while in the self-tuning ruleset they must be completely hyperparameter-free. In both rulesets, submissions are compared on time-to-result across multiple deep learning workloads, training on fixed hardware. This paper presents the inaugural AlgoPerf competition's results, which drew 18 diverse submissions from 10 teams. Our investigation reveals several key findings: (1) The winning submission in the external tuning ruleset, using Distributed Shampoo, demonstrates the effectiveness of non-diagonal preconditioning over popular methods like Adam, even when compared on wall-clock runtime. (2) The winning submission in the self-tuning ruleset, based on the Schedule Free AdamW algorithm, demonstrates a new level of effectiveness for completely hyperparameter-free training algorithms. (3) The top-scoring submissions were surprisingly robust to workload changes. We also discuss the engineering challenges encountered in ensuring a fair comparison between different training algorithms. These results highlight both the significant progress so far, and the considerable room for further improvements.
Intuitive physics understanding emerges from self-supervised pretraining on natural videos
Garrido, Quentin, Ballas, Nicolas, Assran, Mahmoud, Bardes, Adrien, Najman, Laurent, Rabbat, Michael, Dupoux, Emmanuel, LeCun, Yann
We investigate the emergence of intuitive physics understanding in general-purpose deep neural network models trained to predict masked regions in natural videos. Leveraging the violation-of-expectation framework, we find that video prediction models trained to predict outcomes in a learned representation space demonstrate an understanding of various intuitive physics properties, such as object permanence and shape consistency. In contrast, video prediction in pixel space and multimodal large language models, which reason through text, achieve performance closer to chance. Our comparisons of these architectures reveal that jointly learning an abstract representation space while predicting missing parts of sensory input, akin to predictive coding, is sufficient to acquire an understanding of intuitive physics, and that even models trained on one week of unique video achieve above chance performance. This challenges the idea that core knowledge -- a set of innate systems to help understand the world -- needs to be hardwired to develop an understanding of intuitive physics.
Towards General-Purpose Model-Free Reinforcement Learning
Fujimoto, Scott, D'Oro, Pierluca, Zhang, Amy, Tian, Yuandong, Rabbat, Michael
Reinforcement learning (RL) promises a framework for near-universal problem-solving. In practice however, RL algorithms are often tailored to specific benchmarks, relying on carefully tuned hyperparameters and algorithmic choices. Recently, powerful model-based RL methods have shown impressive general results across benchmarks but come at the cost of increased complexity and slow run times, limiting their broader applicability. In this paper, we attempt to find a unifying model-free deep RL algorithm that can address a diverse class of domains and problem settings. To achieve this, we leverage model-based representations that approximately linearize the value function, taking advantage of the denser task objectives used by model-based RL while avoiding the costs associated with planning or simulated trajectories. We evaluate our algorithm, MR.Q, on a variety of common RL benchmarks with a single set of hyperparameters and show a competitive performance against domain-specific and general baselines, providing a concrete step towards building general-purpose model-free deep RL algorithms.
Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces
Su, DiJia, Sukhbaatar, Sainbayar, Rabbat, Michael, Tian, Yuandong, Zheng, Qinqing
In human cognition theory, human thinking is governed by two systems: the fast and intuitive System 1 and the slower but more deliberative System 2. Recent studies have shown that incorporating System 2 process into Transformers including large language models (LLMs), significantly enhances their reasoning capabilities. Nevertheless, models that purely resemble System 2 thinking require substantially higher computational costs and are much slower to respond. To address this challenge, we present Dualformer, a single Transformer model that seamlessly integrates both the fast and slow reasoning modes. Dualformer is obtained by training on data with randomized reasoning traces, where different parts of the traces are dropped during training. The dropping strategies are specifically tailored according to the trace structure, analogous to analyzing our thinking process and creating shortcuts with patterns. At inference time, our model can be configured to output only the solutions (fast mode) or both the reasoning chain and the final solution (slow mode), or automatically decide which mode to engage (auto mode). In all cases, Dualformer outperforms the corresponding baseline models in both performance and computational efficiency: (1) in slow mode, Dualformer optimally solves unseen 30 x 30 maze navigation tasks 97.6% of the time, surpassing the Searchformer (trained on data with complete reasoning traces) baseline performance of 93.3%, while only using 45.5% fewer reasoning steps; (2) in fast mode, Dualformer completes those tasks with an 80% optimal rate, significantly outperforming the Solution-Only model (trained on solution-only data), which has an optimal rate of only 30%. For math problems, our techniques have also achieved improved performance with LLM fine-tuning, showing its generalization beyond task-specific models.
Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping
Lehnert, Lucas, Sukhbaatar, Sainbayar, Su, DiJia, Zheng, Qinqing, Mcvay, Paul, Rabbat, Michael, Tian, Yuandong
While Transformers have enabled tremendous progress in various application settings, such architectures still trail behind traditional symbolic planners for solving complex decision making tasks. In this work, we demonstrate how to train Transformers to solve complex planning tasks. This is accomplished by training an encoder-decoder Transformer model to predict the search dynamics of the $A^*$ search algorithm. We fine tune this model to obtain a Searchformer, a Transformer model that optimally solves previously unseen Sokoban puzzles 93.7% of the time, while using up to 26.8% fewer search steps than the $A^*$ implementation that was used for training initially. In our training method, $A^*$'s search dynamics are expressed as a token sequence outlining when task states are added and removed into the search tree during symbolic planning. Searchformer significantly outperforms baselines that predict the optimal plan directly with a 5-10$\times$ smaller model size and a 10$\times$ smaller training dataset. Lastly, we demonstrate how Searchformer scales to larger and more complex decision making tasks with improved percentage of solved tasks and shortened search dynamics.
Embracing Diversity: Interpretable Zero-shot classification beyond one vector per class
Moayeri, Mazda, Rabbat, Michael, Ibrahim, Mark, Bouchacourt, Diane
Vision-language models enable open-world classification of objects without the need for any retraining. While this zero-shot paradigm marks a significant advance, even today's best models exhibit skewed performance when objects are dissimilar from their typical depiction. Real world objects such as pears appear in a variety of forms -- from diced to whole, on a table or in a bowl -- yet standard VLM classifiers map all instances of a class to a \it{single vector based on the class label}. We argue that to represent this rich diversity within a class, zero-shot classification should move beyond a single vector. We propose a method to encode and account for diversity within a class using inferred attributes, still in the zero-shot setting without retraining. We find our method consistently outperforms standard zero-shot classification over a large suite of datasets encompassing hierarchies, diverse object states, and real-world geographic diversity, as well finer-grained datasets where intra-class diversity may be less prevalent. Importantly, our method is inherently interpretable, offering faithful explanations for each inference to facilitate model debugging and enhance transparency. We also find our method scales efficiently to a large number of attributes to account for diversity -- leading to more accurate predictions for atypical instances. Finally, we characterize a principled trade-off between overall and worst class accuracy, which can be tuned via a hyperparameter of our method. We hope this work spurs further research into the promise of zero-shot classification beyond a single class vector for capturing diversity in the world, and building transparent AI systems without compromising performance.
Revisiting Feature Prediction for Learning Visual Representations from Video
Bardes, Adrien, Garrido, Quentin, Ponce, Jean, Chen, Xinlei, Rabbat, Michael, LeCun, Yann, Assran, Mahmoud, Ballas, Nicolas
This paper explores feature prediction as a stand-alone objective for unsupervised learning from video and introduces V-JEPA, a collection of vision models trained solely using a feature prediction objective, without the use of pretrained image encoders, text, negative examples, reconstruction, or other sources of supervision. The models are trained on 2 million videos collected from public datasets and are evaluated on downstream image and video tasks. Our results show that learning by predicting video features leads to versatile visual representations that perform well on both motion and appearance-based tasks, without adaption of the model's parameters; e.g., using a frozen backbone. Our largest model, a ViT-H/16 trained only on videos, obtains 81.9% on Kinetics-400, 72.2% on Something-Something-v2, and 77.9% on ImageNet1K.
A Distributed Data-Parallel PyTorch Implementation of the Distributed Shampoo Optimizer for Training Neural Networks At-Scale
Shi, Hao-Jun Michael, Lee, Tsung-Hsien, Iwasaki, Shintaro, Gallego-Posada, Jose, Li, Zhijing, Rangadurai, Kaushik, Mudigere, Dheevatsa, Rabbat, Michael
Shampoo is an online and stochastic optimization algorithm belonging to the AdaGrad family of methods for training neural networks. It constructs a block-diagonal preconditioner where each block consists of a coarse Kronecker product approximation to full-matrix AdaGrad for each parameter of the neural network. In this work, we provide a complete description of the algorithm as well as the performance optimizations that our implementation leverages to train deep networks at-scale in PyTorch. Our implementation enables fast multi-GPU distributed data-parallel training by distributing the memory and computation associated with blocks of each parameter via PyTorch's DTensor data structure and performing an AllGather primitive on the computed search directions at each iteration. This major performance enhancement enables us to achieve at most a 10% performance reduction in per-step wall-clock time compared against standard diagonal-scaling-based adaptive gradient methods. We validate our implementation by performing an ablation study on training ImageNet ResNet50, demonstrating Shampoo's superiority over standard training recipes with minimal hyperparameter tuning.
Positive Unlabeled Contrastive Learning
Acharya, Anish, Sanghavi, Sujay, Jing, Li, Bhushanam, Bhargav, Rabbat, Michael, Dhillon, Inderjit
Self-supervised pretraining on unlabeled data followed by supervised fine-tuning on labeled data is a popular paradigm for learning from limited labeled examples. We extend this paradigm to the classical positive unlabeled (PU) setting, where the task is to learn a binary classifier given only a few labeled positive samples, and (often) a large amount of unlabeled samples (which could be positive or negative). We first propose a simple extension of standard infoNCE family of contrastive losses, to the PU setting; and show that this learns superior representations, as compared to existing unsupervised and supervised approaches. We then develop a simple methodology to pseudo-label the unlabeled samples using a new PU-specific clustering scheme; these pseudo-labels can then be used to train the final (positive vs. negative) classifier. Our method handily outperforms state-of-the-art PU methods over several standard PU benchmark datasets, while not requiring a-priori knowledge of any class prior (which is a common assumption in other PU methods). We also provide a simple theoretical analysis that motivates our methods.
Green Federated Learning
Yousefpour, Ashkan, Guo, Shen, Shenoy, Ashish, Ghosh, Sayan, Stock, Pierre, Maeng, Kiwan, Krüger, Schalk-Willem, Rabbat, Michael, Wu, Carole-Jean, Mironov, Ilya
The rapid progress of AI is fueled by increasingly large and computationally intensive machine learning models and datasets. As a consequence, the amount of compute used in training state-of-the-art models is exponentially increasing (doubling every 10 months between 2015 and 2022), resulting in a large carbon footprint. Federated Learning (FL) - a collaborative machine learning technique for training a centralized model using data of decentralized entities - can also be resource-intensive and have a significant carbon footprint, particularly when deployed at scale. Unlike centralized AI that can reliably tap into renewables at strategically placed data centers, cross-device FL may leverage as many as hundreds of millions of globally distributed end-user devices with diverse energy sources. Green AI is a novel and important research area where carbon footprint is regarded as an evaluation criterion for AI, alongside accuracy, convergence speed, and other metrics. In this paper, we propose the concept of Green FL, which involves optimizing FL parameters and making design choices to minimize carbon emissions consistent with competitive performance and training time. The contributions of this work are two-fold. First, we adopt a data-driven approach to quantify the carbon emissions of FL by directly measuring real-world at-scale FL tasks running on millions of phones. Second, we present challenges, guidelines, and lessons learned from studying the trade-off between energy efficiency, performance, and time-to-train in a production FL system. Our findings offer valuable insights into how FL can reduce its carbon footprint, and they provide a foundation for future research in the area of Green AI.