Plotting

 Que, Zhiqiang


Building Machine Learning Challenges for Anomaly Detection in Science

arXiv.org Artificial Intelligence

Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.


MetaML-Pro: Cross-Stage Design Flow Automation for Efficient Deep Learning Acceleration

arXiv.org Artificial Intelligence

This paper presents a unified framework for codifying and automating optimization strategies to efficiently deploy deep neural networks (DNNs) on resource-constrained hardware, such as FPGAs, while maintaining high performance, accuracy, and resource efficiency. Deploying DNNs on such platforms involves addressing the significant challenge of balancing performance, resource usage (e.g., DSPs and LUTs), and inference accuracy, which often requires extensive manual effort and domain expertise. Our novel approach addresses two key issues: cross-stage co-optimization and optimization search. By seamlessly integrating programmatic DNN optimization techniques with high-level synthesis (HLS)-based metaprogramming and leveraging advanced design space exploration (DSE) strategies like Bayesian optimization, the framework automates both top-down and bottom-up design flows, reducing the need for manual intervention and domain expertise. The proposed framework introduces customizable optimization, transformation, and control blocks to enhance DNN accelerator performance and resource efficiency. Experimental results demonstrate up to a 92\% DSP and 89\% LUT usage reduction for select networks, while preserving accuracy, along with a 15.6-fold reduction in optimization time compared to grid search. These results underscore the novelty and potential of the proposed framework for automated, resource-efficient DNN accelerator designs.


Sets are all you need: Ultrafast jet classification on FPGAs for HL-LHC

arXiv.org Artificial Intelligence

Nature Machine Intelligence Dear Editors, We are hereby submitting the paper'AXXX' to Nature Machine Intelligence as we believe that the content fits the target audience of this Journal and the novelty criteria you require. To our knowledge the present study is the first demonstration of the application of graph neural networks for jet tagging on FPGAs for inference time within O(100) ns. Using the HLS4ML library combined with quantization-aware training and efficient FPGA implementations, we show that O(100) ns inference of complex architectures like graph convolutional neural networks, garnet and interaction networks is feasible at low resource-cost. Our target application is the real-time processing of Large Hadron Collider (LHC) data. However, we believe that the proposed solution could fit other problems related to low latency data selection beyond the LHC. The conditions at the LHC are unique and at the extreme end of the inference-on-the-edge spectrum.


LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy Physics

arXiv.org Artificial Intelligence

This work presents a novel reconfigurable architecture for Low Latency Graph Neural Network (LL-GNN) designs for particle detectors, delivering unprecedented low latency performance. Incorporating FPGA-based GNNs into particle detectors presents a unique challenge since it requires sub-microsecond latency to deploy the networks for online event selection with a data rate of hundreds of terabytes per second in the Level-1 triggers at the CERN Large Hadron Collider experiments. This paper proposes a novel outer-product based matrix multiplication approach, which is enhanced by exploiting the structured adjacency matrix and a column-major data layout. Moreover, a fusion step is introduced to further reduce the end-to-end design latency by eliminating unnecessary boundaries. Furthermore, a GNN-specific algorithm-hardware co-design approach is presented which not only finds a design with a much better latency but also finds a high accuracy design under given latency constraints. To facilitate this, a customizable template for this low latency GNN hardware architecture has been designed and open-sourced, which enables the generation of low-latency FPGA designs with efficient resource utilization using a high-level synthesis tool. Evaluation results show that our FPGA implementation is up to 9.0 times faster and achieves up to 13.1 times higher power efficiency than a GPU implementation. Compared to the previous FPGA implementations, this work achieves 6.51 to 16.7 times lower latency. Moreover, the latency of our FPGA design is sufficiently low to enable deployment of GNNs in a sub-microsecond, real-time collider trigger system, enabling it to benefit from improved accuracy. The proposed LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.


When Monte-Carlo Dropout Meets Multi-Exit: Optimizing Bayesian Neural Networks on FPGA

arXiv.org Artificial Intelligence

Bayesian Neural Networks (BayesNNs) have demonstrated their capability of providing calibrated prediction for safety-critical applications such as medical imaging and autonomous driving. However, the high algorithmic complexity and the poor hardware performance of BayesNNs hinder their deployment in real-life applications. To bridge this gap, this paper proposes a novel multi-exit Monte-Carlo Dropout (MCD)-based BayesNN that achieves well-calibrated predictions with low algorithmic complexity. To further reduce the barrier to adopting BayesNNs, we propose a transformation framework that can generate FPGA-based accelerators for multi-exit MCD-based BayesNNs. Several novel optimization techniques are introduced to improve hardware performance. Our experiments demonstrate that our auto-generated accelerator achieves higher energy efficiency than CPU, GPU, and other state-of-the-art hardware implementations.


MetaML: Automating Customizable Cross-Stage Design-Flow for Deep Learning Acceleration

arXiv.org Artificial Intelligence

This paper introduces a novel optimization framework for deep neural network (DNN) hardware accelerators, enabling the rapid development of customized and automated design flows. More specifically, our approach aims to automate the selection and configuration of low-level optimization techniques, encompassing DNN and FPGA low-level optimizations. We introduce novel optimization and transformation tasks for building design-flow architectures, which are highly customizable and flexible, thereby enhancing the performance and efficiency of DNN accelerators. Our results demonstrate considerable reductions of up to 92\% in DSP usage and 89\% in LUT usage for two networks, while maintaining accuracy and eliminating the need for human effort or domain expertise. In comparison to state-of-the-art approaches, our design achieves higher accuracy and utilizes three times fewer DSP resources, underscoring the advantages of our proposed framework.


Applications and Techniques for Fast Machine Learning in Science

arXiv.org Artificial Intelligence

In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. We also present overlapping challenges across the multiple scientific domains where common solutions can be found. This community report is intended to give plenty of examples and inspiration for scientific discovery through integrated and accelerated ML solutions. This is followed by a high-level overview and organization of technical advances, including an abundance of pointers to source material, which can enable these breakthroughs.