Goto

Collaborating Authors

 Qu, Yanru


Training Free Guided Flow Matching with Optimal Control

arXiv.org Artificial Intelligence

Controlled generation with pre-trained Diffusion and Flow Matching models has vast applications. One strategy for guiding ODE-based generative models is through optimizing a target loss $R(x_1)$ while staying close to the prior distribution. Along this line, some recent work showed the effectiveness of guiding flow model by differentiating through its ODE sampling process. Despite the superior performance, the theoretical understanding of this line of methods is still preliminary, leaving space for algorithm improvement. Moreover, existing methods predominately focus on Euclidean data manifold, and there is a compelling need for guided flow methods on complex geometries such as SO(3), which prevails in high-stake scientific applications like protein design. We present OC-Flow, a general and theoretically grounded training-free framework for guided flow matching using optimal control. Building upon advances in optimal control theory, we develop effective and practical algorithms for solving optimal control in guided ODE-based generation and provide a systematic theoretical analysis of the convergence guarantee in both Euclidean and SO(3). We show that existing backprop-through-ODE methods can be interpreted as special cases of Euclidean OC-Flow. OC-Flow achieved superior performance in extensive experiments on text-guided image manipulation, conditional molecule generation, and all-atom peptide design.


MolCRAFT: Structure-Based Drug Design in Continuous Parameter Space

arXiv.org Artificial Intelligence

Generative models for structure-based drug design (SBDD) have shown promising results in recent years. Existing works mainly focus on how to generate molecules with higher binding affinity, ignoring the feasibility prerequisites for generated 3D poses and resulting in false positives. We conduct thorough studies on key factors of ill-conformational problems when applying autoregressive methods and diffusion to SBDD, including mode collapse and hybrid continuous-discrete space. In this paper, we introduce MolCRAFT, the first SBDD model that operates in the continuous parameter space, together with a novel noise reduced sampling strategy. Empirical results show that our model consistently achieves superior performance in binding affinity with more stable 3D structure, demonstrating our ability to accurately model interatomic interactions. To our best knowledge, MolCRAFT is the first to achieve reference-level Vina Scores (-6.59 kcal/mol) with comparable molecular size, outperforming other strong baselines by a wide margin (-0.84 kcal/mol). Code is available at https://github.com/AlgoMole/MolCRAFT.


Unified Generative Modeling of 3D Molecules via Bayesian Flow Networks

arXiv.org Artificial Intelligence

Advanced generative model (e.g., diffusion model) derived from simplified continuity assumptions of data distribution, though showing promising progress, has been difficult to apply directly to geometry generation applications due to the multimodality and noise-sensitive nature of molecule geometry. This work introduces Geometric Bayesian Flow Networks (GeoBFN), which naturally fits molecule geometry by modeling diverse modalities in the differentiable parameter space of distributions. GeoBFN maintains the SE-(3) invariant density modeling property by incorporating equivariant inter-dependency modeling on parameters of distributions and unifying the probabilistic modeling of different modalities. Through optimized training and sampling techniques, we demonstrate that GeoBFN achieves state-ofthe-art performance on multiple 3D molecule generation benchmarks in terms of generation quality (90.87% molecule stability in QM9 and 85.6% atom stability in GEOM-DRUG For example, proteins can be represented as proximity spatial graphs (Jing et al., 2021) and molecules as atomic graphs in 3D (Schรผtt et al., 2017). Most recently, inspired by the huge success of diffusion model (DM) in image generation Figure 1: The framework of GeoBFN Meng et al. (2022); Ho et al. (2020) However, two major challenges remain in directly applying DM to molecule geometry: multi-modality and noise sensitivity. The multi-modality issue refers to the dependency on diverse data forms to effectively depict the atomic-level geometry of a molecule.


ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction

arXiv.org Artificial Intelligence

Click-through rate (CTR) prediction has become increasingly indispensable for various Internet applications. Traditional CTR models convert the multi-field categorical data into ID features via one-hot encoding, and extract the collaborative signals among features. Such a paradigm suffers from the problem of semantic information loss. Another line of research explores the potential of pretrained language models (PLMs) for CTR prediction by converting input data into textual sentences through hard prompt templates. Although semantic signals are preserved, they generally fail to capture the collaborative information (e.g., feature interactions, pure ID features), not to mention the unacceptable inference overhead brought by the huge model size. In this paper, we aim to model both the semantic knowledge and collaborative knowledge for accurate CTR estimation, and meanwhile address the inference inefficiency issue. To benefit from both worlds and close their gaps, we propose a novel model-agnostic framework (i.e., ClickPrompt), where we incorporate CTR models to generate interaction-aware soft prompts for PLMs. We design a prompt-augmented masked language modeling (PA-MLM) pretraining task, where PLM has to recover the masked tokens based on the language context, as well as the soft prompts generated by CTR model. The collaborative and semantic knowledge from ID and textual features would be explicitly aligned and interacted via the prompt interface. Then, we can either tune the CTR model with PLM for superior performance, or solely tune the CTR model without PLM for inference efficiency. Experiments on four real-world datasets validate the effectiveness of ClickPrompt compared with existing baselines.


MAP: A Model-agnostic Pretraining Framework for Click-through Rate Prediction

arXiv.org Artificial Intelligence

With the widespread application of personalized online services, click-through rate (CTR) prediction has received more and more attention and research. The most prominent features of CTR prediction are its multi-field categorical data format, and vast and daily-growing data volume. The large capacity of neural models helps digest such massive amounts of data under the supervised learning paradigm, yet they fail to utilize the substantial data to its full potential, since the 1-bit click signal is not sufficient to guide the model to learn capable representations of features and instances. The self-supervised learning paradigm provides a more promising pretrain-finetune solution to better exploit the large amount of user click logs, and learn more generalized and effective representations. However, self-supervised learning for CTR prediction is still an open question, since current works on this line are only preliminary and rudimentary. To this end, we propose a Model-agnostic pretraining (MAP) framework that applies feature corruption and recovery on multi-field categorical data, and more specifically, we derive two practical algorithms: masked feature prediction (MFP) and replaced feature detection (RFD). MFP digs into feature interactions within each instance through masking and predicting a small portion of input features, and introduces noise contrastive estimation (NCE) to handle large feature spaces. RFD further turns MFP into a binary classification mode through replacing and detecting changes in input features, making it even simpler and more effective for CTR pretraining. Our extensive experiments on two real-world large-scale datasets (i.e., Avazu, Criteo) demonstrate the advantages of these two methods on several strong backbones (e.g., DCNv2, DeepFM), and achieve new state-of-the-art performance in terms of both effectiveness and efficiency for CTR prediction.


A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation

arXiv.org Artificial Intelligence

Adversarial training has been shown effective at endowing the learned representations with stronger generalization ability. However, it typically requires expensive computation to determine the direction of the injected perturbations. In this paper, we introduce a set of simple yet effective data augmentation strategies dubbed cutoff, where part of the information within an input sentence is erased to yield its restricted views (during the fine-tuning stage). Notably, this process relies merely on stochastic sampling and thus adds little computational overhead. A Jensen-Shannon Divergence consistency loss is further utilized to incorporate these augmented samples into the training objective in a principled manner. To verify the effectiveness of the proposed strategies, we apply cutoff to both natural language understanding and generation problems. On the GLUE benchmark, it is demonstrated that cutoff, in spite of its simplicity, performs on par or better than several competitive adversarial-based approaches. We further extend cutoff to machine translation and observe significant gains in BLEU scores (based upon the Transformer Base model). Moreover, cutoff consistently outperforms adversarial training and achieves state-of-the-art results on the IWSLT2014 German-English dataset.


Multi-document Summarization with Maximal Marginal Relevance-guided Reinforcement Learning

arXiv.org Artificial Intelligence

While neural sequence learning methods have made significant progress in single-document summarization (SDS), they produce unsatisfactory results on multi-document summarization (MDS). We observe two major challenges when adapting SDS advances to MDS: (1) MDS involves larger search space and yet more limited training data, setting obstacles for neural methods to learn adequate representations; (2) MDS needs to resolve higher information redundancy among the source documents, which SDS methods are less effective to handle. To close the gap, we present RL-MMR, Maximal Margin Relevance-guided Reinforcement Learning for MDS, which unifies advanced neural SDS methods and statistical measures used in classical MDS. RL-MMR casts MMR guidance on fewer promising candidates, which restrains the search space and thus leads to better representation learning. Additionally, the explicit redundancy measure in MMR helps the neural representation of the summary to better capture redundancy. Extensive experiments demonstrate that RL-MMR achieves state-of-the-art performance on benchmark MDS datasets. In particular, we show the benefits of incorporating MMR into end-to-end learning when adapting SDS to MDS in terms of both learning effectiveness and efficiency.


GIKT: A Graph-based Interaction Model for Knowledge Tracing

arXiv.org Artificial Intelligence

With the rapid development in online education, knowledge tracing (KT) has become a fundamental problem which traces students' knowledge status and predicts their performance on new questions. Questions are often numerous in online education systems, and are always associated with much fewer skills. However, the previous literature fails to involve question information together with high-order question-skill correlations, which is mostly limited by data sparsity and multi-skill problems. From the model perspective, previous models can hardly capture the long-term dependency of student exercise history, and cannot model the interactions between student-questions, and student-skills in a consistent way. In this paper, we propose a Graph-based Interaction model for Knowledge Tracing (GIKT) to tackle the above probems. More specifically, GIKT utilizes graph convolutional network (GCN) to substantially incorporate question-skill correlations via embedding propagation. Besides, considering that relevant questions are usually scattered throughout the exercise history, and that question and skill are just different instantiations of knowledge, GIKT generalizes the degree of students' master of the question to the interactions between the student's current state, the student's history related exercises, the target question, and related skills. Experiments on three datasets demonstrate that GIKT achieves the new state-of-the-art performance, with at least 1% absolute AUC improvement.


QA4IE: A Question Answering based Framework for Information Extraction

arXiv.org Artificial Intelligence

Information Extraction (IE) refers to automatically extracting structured relation tuples from unstructured texts. Common IE solutions, including Relation Extraction (RE) and open IE systems, can hardly handle cross-sentence tuples, and are severely restricted by limited relation types as well as informal relation specifications (e.g., free-text based relation tuples). In order to overcome these weaknesses, we propose a novel IE framework named QA4IE, which leverages the flexible question answering (QA) approaches to produce high quality relation triples across sentences. Based on the framework, we develop a large IE benchmark with high quality human evaluation. This benchmark contains 293K documents, 2M golden relation triples, and 636 relation types. We compare our system with some IE baselines on our benchmark and the results show that our system achieves great improvements.


TGE-PS: Text-driven Graph Embedding with Pairs Sampling

arXiv.org Artificial Intelligence

In graphs with rich text information, constructing expressive graph representations requires incorporating textual information with structural information. Graph embedding models are becoming more and more popular in representing graphs, yet they are faced with two issues: sampling efficiency and text utilization. Through analyzing existing models, we find their training objectives are composed of pairwise proximities, and there are large amounts of redundant node pairs in Random Walk-based methods. Besides, inferring graph structures directly from texts (also known as zero-shot scenario) is a problem that requires higher text utilization. To solve these problems, we propose a novel Text-driven Graph Embedding with Pairs Sampling (TGE-PS) framework. TGE-PS uses Pairs Sampling (PS) to generate training samples which reduces ~99% training samples and is competitive compared to Random Walk. TGE-PS uses Text-driven Graph Embedding (TGE) which adopts word- and character-level embeddings to generate node embeddings. We evaluate TGE-PS on several real-world datasets, and experimental results demonstrate that TGE-PS produces state-of-the-art results in traditional and zero-shot link prediction tasks.