Qu, Meng
Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science
Tang, Xiangru, Jin, Qiao, Zhu, Kunlun, Yuan, Tongxin, Zhang, Yichi, Zhou, Wangchunshu, Qu, Meng, Zhao, Yilun, Tang, Jian, Zhang, Zhuosheng, Cohan, Arman, Lu, Zhiyong, Gerstein, Mark
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines. While their capabilities are promising, they also introduce novel vulnerabilities that demand careful consideration for safety. However, there exists a notable gap in the literature, as there has been no comprehensive exploration of these vulnerabilities. This position paper fills this gap by conducting a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures. We begin by providing a comprehensive overview of the potential risks inherent to scientific LLM agents, taking into account user intent, the specific scientific domain, and their potential impact on the external environment. Then, we delve into the origins of these vulnerabilities and provide a scoping review of the limited existing works. Based on our analysis, we propose a triadic framework involving human regulation, agent alignment, and an understanding of environmental feedback (agent regulation) to mitigate these identified risks. Furthermore, we highlight the limitations and challenges associated with safeguarding scientific agents and advocate for the development of improved models, robust benchmarks, and comprehensive regulations to address these issues effectively.
GraphText: Graph Reasoning in Text Space
Zhao, Jianan, Zhuo, Le, Shen, Yikang, Qu, Meng, Liu, Kai, Bronstein, Michael, Zhu, Zhaocheng, Tang, Jian
Large Language Models (LLMs) have gained the ability to assimilate human knowledge and facilitate natural language interactions with both humans and other LLMs. However, despite their impressive achievements, LLMs have not made significant advancements in the realm of graph machine learning. This limitation arises because graphs encapsulate distinct relational data, making it challenging to transform them into natural language that LLMs understand. In this paper, we bridge this gap with a novel framework, GraphText, that translates graphs into natural language. GraphText derives a graph-syntax tree for each graph that encapsulates both the node attributes and inter-node relationships. Traversal of the tree yields a graph text sequence, which is then processed by an LLM to treat graph tasks as text generation tasks. Notably, GraphText offers multiple advantages. It introduces training-free graph reasoning: even without training on graph data, GraphText with ChatGPT can achieve on par with, or even surpassing, the performance of supervised-trained graph neural networks through in-context learning (ICL). Furthermore, GraphText paves the way for interactive graph reasoning, allowing both humans and LLMs to communicate with the model seamlessly using natural language. These capabilities underscore the vast, yet-to-be-explored potential of LLMs in the domain of graph machine learning.
TGNN: A Joint Semi-supervised Framework for Graph-level Classification
Ju, Wei, Luo, Xiao, Qu, Meng, Wang, Yifan, Chen, Chong, Deng, Minghua, Hua, Xian-Sheng, Zhang, Ming
This paper studies semi-supervised graph classification, a crucial task with a wide range of applications in social network analysis and bioinformatics. Recent works typically adopt graph neural networks to learn graph-level representations for classification, failing to explicitly leverage features derived from graph topology (e.g., paths). Moreover, when labeled data is scarce, these methods are far from satisfactory due to their insufficient topology exploration of unlabeled data. We address the challenge by proposing a novel semi-supervised framework called Twin Graph Neural Network (TGNN). To explore graph structural information from complementary views, our TGNN has a message passing module and a graph kernel module. To fully utilize unlabeled data, for each module, we calculate the similarity of each unlabeled graph to other labeled graphs in the memory bank and our consistency loss encourages consistency between two similarity distributions in different embedding spaces. The two twin modules collaborate with each other by exchanging instance similarity knowledge to fully explore the structure information of both labeled and unlabeled data. We evaluate our TGNN on various public datasets and show that it achieves strong performance.
Learning on Large-scale Text-attributed Graphs via Variational Inference
Zhao, Jianan, Qu, Meng, Li, Chaozhuo, Yan, Hao, Liu, Qian, Li, Rui, Xie, Xing, Tang, Jian
This paper studies learning on text-attributed graphs (TAGs), where each node is associated with a text description. An ideal solution for such a problem would be integrating both the text and graph structure information with large language models and graph neural networks (GNNs). However, the problem becomes very challenging when graphs are large due to the high computational complexity brought by training large language models and GNNs together. In this paper, we propose an efficient and effective solution to learning on large text-attributed graphs by fusing graph structure and language learning with a variational Expectation-Maximization (EM) framework, called GLEM. Instead of simultaneously training large language models and GNNs on big graphs, GLEM proposes to alternatively update the two modules in the E-step and M-step. Such a procedure allows training the two modules separately while simultaneously allowing the two modules to interact and mutually enhance each other. Extensive experiments on multiple data sets demonstrate the efficiency and effectiveness of the proposed approach.
Predicting Infectiousness for Proactive Contact Tracing
Bengio, Yoshua, Gupta, Prateek, Maharaj, Tegan, Rahaman, Nasim, Weiss, Martin, Deleu, Tristan, Muller, Eilif, Qu, Meng, Schmidt, Victor, St-Charles, Pierre-Luc, Alsdurf, Hannah, Bilanuik, Olexa, Buckeridge, David, Caron, Gáetan Marceau, Carrier, Pierre-Luc, Ghosn, Joumana, Ortiz-Gagne, Satya, Pal, Chris, Rish, Irina, Schölkopf, Bernhard, Sharma, Abhinav, Tang, Jian, Williams, Andrew
The COVID-19 pandemic has spread rapidly worldwide, overwhelming manual contact tracing in many countries and resulting in widespread lockdowns for emergency containment. Various DCT methods have been proposed, each making tradeoffs between privacy, mobility restrictions, and public health. The most common approach, binary contact tracing (BCT), models infection as a binary event, informed only by an individual's test results, with corresponding binary recommendations that either all or none of the individual's contacts quarantine. BCT ignores the inherent uncertainty in contacts and the infection process, which could be used to tailor messaging to high-risk individuals, and prompt proactive testing or earlier warnings. It also does not make use of observations such as symptoms or preexisting medical conditions, which could be used to make more accurate infectiousness predictions. In this paper, we use a recently-proposed COVID-19 epidemiological simulator to develop and test methods that can be deployed to a smartphone to locally and proactively predict an individual's infectiousness (risk of infecting others) based on their contact history and other information, while respecting strong privacy constraints. Predictions are used to provide personalized recommendations to the individual via an app, as well as to send anonymized messages to the individual's contacts, who use this information to better predict their own infectiousness, an approach we call proactive contact tracing (PCT). Similarly to other works, we find that compared to no tracing, all DCT methods tested are able to reduce spread of the disease and thus save lives, even at low adoption rates, strongly supporting a role for DCT methods in managing the pandemic. Further, we find a deep-learning based PCT method which improves over BCT for equivalent average mobility, suggesting PCT could help in safe reopening and second-wave prevention. Until pharmaceutical interventions such as a vaccine become available, control of the COVID-19 pandemic relies on nonpharmaceutical interventions such as lockdown and social distancing. While these have often been successful in limiting spread of the disease in the short term, these restrictive measures have important negative social, mental health, and economic impacts. Digital contact tracing (DCT), a technique to track the spread of the virus among individuals in a population using smartphones, is an attractive potential solution to help reduce growth in the number of cases and thereby allow more economic and social activities to resume while keeping the number of cases low. All bolded terms are defined in the Glossary; Appendix 1.
RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs
Qu, Meng, Chen, Junkun, Xhonneux, Louis-Pascal, Bengio, Yoshua, Tang, Jian
This paper studies learning logic rules for reasoning on knowledge graphs. Logic rules provide interpretable explanations when used for prediction as well as being able to generalize to other tasks, and hence are critical to learn. Existing methods either suffer from the problem of searching in a large search space (e.g., neural logic programming) or ineffective optimization due to sparse rewards (e.g., techniques based on reinforcement learning). To address these limitations, this paper proposes a probabilistic model called RNNLogic. RNNLogic treats logic rules as a latent variable, and simultaneously trains a rule generator as well as a reasoning predictor with logic rules. We develop an EM-based algorithm for optimization. In each iteration, the reasoning predictor is first updated to explore some generated logic rules for reasoning. Then in the E-step, we select a set of high-quality rules from all generated rules with both the rule generator and reasoning predictor via posterior inference; and in the M-step, the rule generator is updated with the rules selected in the E-step. Experiments on four datasets prove the effectiveness of RNNLogic.
COVI White Paper
Alsdurf, Hannah, Belliveau, Edmond, Bengio, Yoshua, Deleu, Tristan, Gupta, Prateek, Ippolito, Daphne, Janda, Richard, Jarvie, Max, Kolody, Tyler, Krastev, Sekoul, Maharaj, Tegan, Obryk, Robert, Pilat, Dan, Pisano, Valerie, Prud'homme, Benjamin, Qu, Meng, Rahaman, Nasim, Rish, Irina, Rousseau, Jean-Francois, Sharma, Abhinav, Struck, Brooke, Tang, Jian, Weiss, Martin, Yu, Yun William
The SARS-CoV-2 (Covid-19) pandemic has caused significant strain on public health institutions around the world. Contact tracing is an essential tool to change the course of the Covid-19 pandemic. Manual contact tracing of Covid-19 cases has significant challenges that limit the ability of public health authorities to minimize community infections. Personalized peer-to-peer contact tracing through the use of mobile apps has the potential to shift the paradigm. Some countries have deployed centralized tracking systems, but more privacy-protecting decentralized systems offer much of the same benefit without concentrating data in the hands of a state authority or for-profit corporations. Machine learning methods can circumvent some of the limitations of standard digital tracing by incorporating many clues and their uncertainty into a more graded and precise estimation of infection risk. The estimated risk can provide early risk awareness, personalized recommendations and relevant information to the user. Finally, non-identifying risk data can inform epidemiological models trained jointly with the machine learning predictor. These models can provide statistical evidence for the importance of factors involved in disease transmission. They can also be used to monitor, evaluate and optimize health policy and (de)confinement scenarios according to medical and economic productivity indicators. However, such a strategy based on mobile apps and machine learning should proactively mitigate potential ethical and privacy risks, which could have substantial impacts on society (not only impacts on health but also impacts such as stigmatization and abuse of personal data). Here, we present an overview of the rationale, design, ethical considerations and privacy strategy of `COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs
Qu, Meng, Gao, Tianyu, Xhonneux, Louis-Pascal A. C., Tang, Jian
This paper studies few-shot relation extraction, which aims at predicting the relation for a pair of entities in a sentence by training with a few labeled examples in each relation. To more effectively generalize to new relations, in this paper we study the relationships between different relations and propose to leverage a global relation graph. We propose a novel Bayesian meta-learning approach to effectively learn the posterior distribution of the prototype vectors of relations, where the initial prior of the prototype vectors is parameterized with a graph neural network on the global relation graph. Moreover, to effectively optimize the posterior distribution of the prototype vectors, we propose to use the stochastic gradient Langevin dynamics, which is related to the MAML algorithm but is able to handle the uncertainty of the prototype vectors. The whole framework can be effectively and efficiently optimized in an end-to-end fashion. Experiments on two benchmark datasets prove the effectiveness of our proposed approach against competitive baselines in both the few-shot and zero-shot settings.
Graph Policy Network for Transferable Active Learning on Graphs
Hu, Shengding, Xiong, Zheng, Qu, Meng, Yuan, Xingdi, Côté, Marc-Alexandre, Liu, Zhiyuan, Tang, Jian
Graph neural networks (GNNs) have been attracting increasing popularity due to their simplicity and effectiveness in a variety of fields. However, a large number of labeled data is generally required to train these networks, which could be very expensive to obtain in some domains. In this paper, we study active learning for GNNs, i.e., how to efficiently label the nodes on a graph to reduce the annotation cost of training GNNs. We formulate the problem as a sequential decision process on graphs and train a GNN-based policy network with reinforcement learning to learn the optimal query strategy. By jointly optimizing over several source graphs with full labels, we learn a transferable active learning policy which can directly generalize to unlabeled target graphs under a zero-shot transfer setting. Experimental results on multiple graphs from different domains prove the effectiveness of our proposed approach in both settings of transferring between graphs in the same domain and across different domains.
Probabilistic Logic Neural Networks for Reasoning
Qu, Meng, Tang, Jian
Knowledge graph reasoning, which aims at predicting missing facts through reasoning with observed facts, is critical for many applications. Such a problem has been widely explored by traditional logic rule-based approaches and recent knowledge graph embedding methods. A principled logic rule-based approach is the Markov Logic Network (MLN), which is able to leverage domain knowledge with first-order logic and meanwhile handle uncertainty. However, the inference in MLNs is usually very difficult due to the complicated graph structures. TransE, DistMult) learn effective entity and relation embeddings for reasoning, which are much more effective and efficient.