Probabilistic Logic Neural Networks for Reasoning
–Neural Information Processing Systems
Knowledge graph reasoning, which aims at predicting missing facts through reasoning with observed facts, is critical for many applications. Such a problem has been widely explored by traditional logic rule-based approaches and recent knowledge graph embedding methods. A principled logic rule-based approach is the Markov Logic Network (MLN), which is able to leverage domain knowledge with first-order logic and meanwhile handle uncertainty. However, the inference in MLNs is usually very difficult due to the complicated graph structures. TransE, DistMult) learn effective entity and relation embeddings for reasoning, which are much more effective and efficient.
Neural Information Processing Systems
Mar-18-2020, 23:46:09 GMT