Qu, Huilin
A Lorentz-Equivariant Transformer for All of the LHC
Brehmer, Johann, Bresó, Víctor, de Haan, Pim, Plehn, Tilman, Qu, Huilin, Spinner, Jonas, Thaler, Jesse
We show that the Lorentz-Equivariant Geometric Algebra Transformer (L-GATr) yields state-of-the-art performance for a wide range of machine learning tasks at the Large Hadron Collider. L-GATr represents data in a geometric algebra over space-time and is equivariant under Lorentz transformations. The underlying architecture is a versatile and scalable transformer, which is able to break symmetries if needed. We demonstrate the power of L-GATr for amplitude regression and jet classification, and then benchmark it as the first Lorentz-equivariant generative network. For all three LHC tasks, we find significant improvements over previous architectures.
CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation
Krause, Claudius, Giannelli, Michele Faucci, Kasieczka, Gregor, Nachman, Benjamin, Salamani, Dalila, Shih, David, Zaborowska, Anna, Amram, Oz, Borras, Kerstin, Buckley, Matthew R., Buhmann, Erik, Buss, Thorsten, Cardoso, Renato Paulo Da Costa, Caterini, Anthony L., Chernyavskaya, Nadezda, Corchia, Federico A. G., Cresswell, Jesse C., Diefenbacher, Sascha, Dreyer, Etienne, Ekambaram, Vijay, Eren, Engin, Ernst, Florian, Favaro, Luigi, Franchini, Matteo, Gaede, Frank, Gross, Eilam, Hsu, Shih-Chieh, Jaruskova, Kristina, Käch, Benno, Kalagnanam, Jayant, Kansal, Raghav, Kim, Taewoo, Kobylianskii, Dmitrii, Korol, Anatolii, Korcari, William, Krücker, Dirk, Krüger, Katja, Letizia, Marco, Li, Shu, Liu, Qibin, Liu, Xiulong, Loaiza-Ganem, Gabriel, Madula, Thandikire, McKeown, Peter, Melzer-Pellmann, Isabell-A., Mikuni, Vinicius, Nguyen, Nam, Ore, Ayodele, Schweitzer, Sofia Palacios, Pang, Ian, Pedro, Kevin, Plehn, Tilman, Pokorski, Witold, Qu, Huilin, Raikwar, Piyush, Raine, John A., Reyes-Gonzalez, Humberto, Rinaldi, Lorenzo, Ross, Brendan Leigh, Scham, Moritz A. W., Schnake, Simon, Shimmin, Chase, Shlizerman, Eli, Soybelman, Nathalie, Srivatsa, Mudhakar, Tsolaki, Kalliopi, Vallecorsa, Sofia, Yeo, Kyongmin, Zhang, Rui
We present the results of the "Fast Calorimeter Simulation Challenge 2022" -- the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including Variational AutoEncoders (VAEs), Generative Adversarial Networks (GANs), Normalizing Flows, Diffusion models, and models based on Conditional Flow Matching. We compare all submissions in terms of quality of generated calorimeter showers, as well as shower generation time and model size. To assess the quality we use a broad range of different metrics including differences in 1-dimensional histograms of observables, KPD/FPD scores, AUCs of binary classifiers, and the log-posterior of a multiclass classifier. The results of the CaloChallenge provide the most complete and comprehensive survey of cutting-edge approaches to calorimeter fast simulation to date. In addition, our work provides a uniquely detailed perspective on the important problem of how to evaluate generative models. As such, the results presented here should be applicable for other domains that use generative AI and require fast and faithful generation of samples in a large phase space.
BUFF: Boosted Decision Tree based Ultra-Fast Flow matching
Jiang, Cheng, Qian, Sitian, Qu, Huilin
Tabular data stands out as one of the most frequently encountered types in high energy physics. Unlike commonly homogeneous data such as pixelated images, simulating high-dimensional tabular data and accurately capturing their correlations are often quite challenging, even with the most advanced architectures. Based on the findings that tree-based models surpass the performance of deep learning models for tasks specific to tabular data, we adopt the very recent generative modeling class named conditional flow matching and employ different techniques to integrate the usage of Gradient Boosted Trees. The performances are evaluated for various tasks on different analysis level with several public datasets. We demonstrate the training and inference time of most high-level simulation tasks can achieve speedup by orders of magnitude. The application can be extended to low-level feature simulation and conditioned generations with competitive performance.
Particle Transformer for Jet Tagging
Qu, Huilin, Li, Congqiao, Qian, Sitian
Jet tagging is a critical yet challenging classification task in particle physics. While deep learning has transformed jet tagging and significantly improved performance, the lack of a large-scale public dataset impedes further enhancement. In this work, we present JetClass, a new comprehensive dataset for jet tagging. The JetClass dataset consists of 100 M jets, about two orders of magnitude larger than existing public datasets. A total of 10 types of jets are simulated, including several types unexplored for tagging so far. Based on the large dataset, we propose a new Transformer-based architecture for jet tagging, called Particle Transformer (ParT). By incorporating pairwise particle interactions in the attention mechanism, ParT achieves higher tagging performance than a plain Transformer and surpasses the previous state-of-the-art, ParticleNet, by a large margin. The pre-trained ParT models, once fine-tuned, also substantially enhance the performance on two widely adopted jet tagging benchmarks. The dataset, code and models are publicly available at https://github.com/jet-universe/particle_transformer.