Goto

Collaborating Authors

 Qin, Yuehan


Treble Counterfactual VLMs: A Causal Approach to Hallucination

arXiv.org Artificial Intelligence

Vision-Language Models (VLMs) have advanced multi-modal tasks like image captioning, visual question answering, and reasoning. However, they often generate hallucinated outputs inconsistent with the visual context or prompt, limiting reliability in critical applications like autonomous driving and medical imaging. Existing studies link hallucination to statistical biases, language priors, and biased feature learning but lack a structured causal understanding. In this work, we introduce a causal perspective to analyze and mitigate hallucination in VLMs. We hypothesize that hallucination arises from unintended direct influences of either the vision or text modality, bypassing proper multi-modal fusion. To address this, we construct a causal graph for VLMs and employ counterfactual analysis to estimate the Natural Direct Effect (NDE) of vision, text, and their cross-modal interaction on the output. We systematically identify and mitigate these unintended direct effects to ensure that responses are primarily driven by genuine multi-modal fusion. Our approach consists of three steps: (1) designing structural causal graphs to distinguish correct fusion pathways from spurious modality shortcuts, (2) estimating modality-specific and cross-modal NDE using perturbed image representations, hallucinated text embeddings, and degraded visual inputs, and (3) implementing a test-time intervention module to dynamically adjust the model's dependence on each modality. Experimental results demonstrate that our method significantly reduces hallucination while preserving task performance, providing a robust and interpretable framework for improving VLM reliability. To enhance accessibility and reproducibility, our code is publicly available at https://github.com/TREE985/Treble-Counterfactual-VLMs.


ClimateLLM: Efficient Weather Forecasting via Frequency-Aware Large Language Models

arXiv.org Artificial Intelligence

Weather forecasting is crucial for public safety, disaster prevention and mitigation, agricultural production, and energy management, with global relevance. Although deep learning has significantly advanced weather prediction, current methods face critical limitations: (i) they often struggle to capture both dynamic temporal dependencies and short-term abrupt changes, making extreme weather modeling difficult; (ii) they incur high computational costs due to extensive training and resource requirements; (iii) they have limited adaptability to multi-scale frequencies, leading to challenges when separating global trends from local fluctuations. To address these issues, we propose ClimateLLM, a foundation model for weather forecasting. It captures spatiotemporal dependencies via a cross-temporal and cross-spatial collaborative modeling framework that integrates Fourier-based frequency decomposition with Large Language Models (LLMs) to strengthen spatial and temporal modeling. Our framework uses a Mixture-of-Experts (MoE) mechanism that adaptively processes different frequency components, enabling efficient handling of both global signals and localized extreme events. In addition, we introduce a cross-temporal and cross-spatial dynamic prompting mechanism, allowing LLMs to incorporate meteorological patterns across multiple scales effectively. Extensive experiments on real-world datasets show that ClimateLLM outperforms state-of-the-art approaches in accuracy and efficiency, as a scalable solution for global weather forecasting. For almost half a century, numerical weather prediction (NWP) methods that rely on solving atmospheric partial differential equations have formed the backbone of operational forecasting Kalnay (2002); Lynch (2008); Bauer et al. (2015); Nguyen et al. (2024).


PyOD 2: A Python Library for Outlier Detection with LLM-powered Model Selection

arXiv.org Artificial Intelligence

Outlier detection (OD), also known as anomaly detection, is a critical machine learning (ML) task with applications in fraud detection, network intrusion detection, clickstream analysis, recommendation systems, and social network moderation. Among open-source libraries for outlier detection, the Python Outlier Detection (PyOD) library is the most widely adopted, with over 8,500 GitHub stars, 25 million downloads, and diverse industry usage. However, PyOD currently faces three limitations: (1) insufficient coverage of modern deep learning algorithms, (2) fragmented implementations across PyTorch and TensorFlow, and (3) no automated model selection, making it hard for non-experts. To address these issues, we present PyOD Version 2 (PyOD 2), which integrates 12 state-of-the-art deep learning models into a unified PyTorch framework and introduces a large language model (LLM)-based pipeline for automated OD model selection. These improvements simplify OD workflows, provide access to 45 algorithms, and deliver robust performance on various datasets. In this paper, we demonstrate how PyOD 2 streamlines the deployment and automation of OD models and sets a new standard in both research and industry. PyOD 2 is accessible at [https://github.com/yzhao062/pyod](https://github.com/yzhao062/pyod). This study aligns with the Web Mining and Content Analysis track, addressing topics such as the robustness of Web mining methods and the quality of algorithmically-generated Web data.


MetaOOD: Automatic Selection of OOD Detection Models

arXiv.org Artificial Intelligence

How can we automatically select an out-of-distribution (OOD) detection model for various underlying tasks? This is crucial for maintaining the reliability of open-world applications by identifying data distribution shifts, particularly in critical domains such as online transactions, autonomous driving, and real-time patient diagnosis. Despite the availability of numerous OOD detection methods, the challenge of selecting an optimal model for diverse tasks remains largely underexplored, especially in scenarios lacking ground truth labels. In this work, we introduce MetaOOD, the first zero-shot, unsupervised framework that utilizes meta-learning to automatically select an OOD detection model. As a meta-learning approach, MetaOOD leverages historical performance data of existing methods across various benchmark OOD datasets, enabling the effective selection of a suitable model for new datasets without the need for labeled data at the test time. To quantify task similarities more accurately, we introduce language model-based embeddings that capture the distinctive OOD characteristics of both datasets and detection models. Through extensive experimentation with 24 unique test dataset pairs to choose from among 11 OOD detection models, we demonstrate that MetaOOD significantly outperforms existing methods and only brings marginal time overhead. Our results, validated by Wilcoxon statistical tests, show that MetaOOD surpasses a diverse group of 11 baselines, including established OOD detectors and advanced unsupervised selection methods.