Qin, Xiaoqi
NeRFCom: Feature Transform Coding Meets Neural Radiance Field for Free-View 3D Scene Semantic Transmission
Yue, Weijie, Si, Zhongwei, Wu, Bolin, Wang, Sixian, Qin, Xiaoqi, Niu, Kai, Dai, Jincheng, Zhang, Ping
Abstract--We introduce NeRFCom, a novel communication system designed for end-to-end 3D scene transmission. Comp ared to traditional systems relying on handcrafted NeRF semanti c feature decomposition for compression and well-adaptive c hannel coding for transmission error correction, our NeRFCom empl oys a nonlinear transform and learned probabilistic models, en abling flexible variable-rate joint source-channel coding and effi cient bandwidth allocation aligned with the NeRF semantic featur e's different contribution to the 3D scene synthesis fidelity. E xperi-mental results demonstrate that NeRFCom achieves free-vie w 3D scene efficient transmission while maintaining robustness under adverse channel conditions. Index T erms --Neural radiance field (NeRF), 3D scene transmission, semantic features, nonlinear transform coding. IRTUAL reality (VR) and augmented reality (AR) construct 3D scenes to provide users with immersive experiences [ 1 ]. However, traditional 3D scene synthesis techniques often rely on manual scene modeling, and the complex workflow increases the cost of deploying 3D technologies.
FedEx: Expediting Federated Learning over Heterogeneous Mobile Devices by Overlapping and Participant Selection
Geng, Jiaxiang, Li, Boyu, Qin, Xiaoqi, Li, Yixuan, Li, Liang, Hou, Yanzhao, Pan, Miao
Training latency is critical for the success of numerous intrigued applications ignited by federated learning (FL) over heterogeneous mobile devices. By revolutionarily overlapping local gradient transmission with continuous local computing, FL can remarkably reduce its training latency over homogeneous clients, yet encounter severe model staleness, model drifts, memory cost and straggler issues in heterogeneous environments. To unleash the full potential of overlapping, we propose, FedEx, a novel \underline{fed}erated learning approach to \underline{ex}pedite FL training over mobile devices under data, computing and wireless heterogeneity. FedEx redefines the overlapping procedure with staleness ceilings to constrain memory consumption and make overlapping compatible with participation selection (PS) designs. Then, FedEx characterizes the PS utility function by considering the latency reduced by overlapping, and provides a holistic PS solution to address the straggler issue. FedEx also introduces a simple but effective metric to trigger overlapping, in order to avoid model drifts. Experimental results show that compared with its peer designs, FedEx demonstrates substantial reductions in FL training latency over heterogeneous mobile devices with limited memory cost.
Deep Generative Modeling Reshapes Compression and Transmission: From Efficiency to Resiliency
Dai, Jincheng, Qin, Xiaoqi, Wang, Sixian, Xu, Lexi, Niu, Kai, Zhang, Ping
Information theory and machine learning are inextricably linked and have even been referred to as "two sides of the same coin". One particularly elegant connection is the essential equivalence between probabilistic generative modeling and data compression or transmission. In this article, we reveal the dual-functionality of deep generative models that reshapes both data compression for efficiency and transmission error concealment for resiliency. We present how the contextual predictive capabilities of powerful generative models can be well positioned to be strong compressors and estimators. In this sense, we advocate for viewing the deep generative modeling problem through the lens of end-to-end communications, and evaluate the compression and error restoration capabilities of foundation generative models. We show that the kernel of many large generative models is powerful predictor that can capture complex relationships among semantic latent variables, and the communication viewpoints provide novel insights into semantic feature tokenization, contextual learning, and usage of deep generative models. In summary, our article highlights the essential connections of generative AI to source and channel coding techniques, and motivates researchers to make further explorations in this emerging topic.
WHALE-FL: Wireless and Heterogeneity Aware Latency Efficient Federated Learning over Mobile Devices via Adaptive Subnetwork Scheduling
Su, Huai-an, Geng, Jiaxiang, Li, Liang, Qin, Xiaoqi, Hou, Yanzhao, Fu, Xin, Pan, Miao
As a popular distributed learning paradigm, federated learning (FL) over mobile devices fosters numerous applications, while their practical deployment is hindered by participating devices' computing and communication heterogeneity. Some pioneering research efforts proposed to extract subnetworks from the global model, and assign as large a subnetwork as possible to the device for local training based on its full computing and communications capacity. Although such fixed size subnetwork assignment enables FL training over heterogeneous mobile devices, it is unaware of (i) the dynamic changes of devices' communication and computing conditions and (ii) FL training progress and its dynamic requirements of local training contributions, both of which may cause very long FL training delay. Motivated by those dynamics, in this paper, we develop a wireless and heterogeneity aware latency efficient FL (WHALE-FL) approach to accelerate FL training through adaptive subnetwork scheduling. Instead of sticking to the fixed size subnetwork, WHALE-FL introduces a novel subnetwork selection utility function to capture device and FL training dynamics, and guides the mobile device to adaptively select the subnetwork size for local training based on (a) its computing and communication capacity, (b) its dynamic computing and/or communication conditions, and (c) FL training status and its corresponding requirements for local training contributions. Our evaluation shows that, compared with peer designs, WHALE-FL effectively accelerates FL training without sacrificing learning accuracy.
Fundamental Limitation of Semantic Communications: Neural Estimation for Rate-Distortion
Li, Dongxu, Huang, Jianhao, Huang, Chuan, Qin, Xiaoqi, Zhang, Han, Zhang, Ping
This paper studies the fundamental limit of semantic communications over the discrete memoryless channel. We consider the scenario to send a semantic source consisting of an observation state and its corresponding semantic state, both of which are recovered at the receiver. To derive the performance limitation, we adopt the semantic rate-distortion function (SRDF) to study the relationship among the minimum compression rate, observation distortion, semantic distortion, and channel capacity. For the case with unknown semantic source distribution, while only a set of the source samples is available, we propose a neural-network-based method by leveraging the generative networks to learn the semantic source distribution. Furthermore, for a special case where the semantic state is a deterministic function of the observation, we design a cascade neural network to estimate the SRDF. For the case with perfectly known semantic source distribution, we propose a general Blahut-Arimoto algorithm to effectively compute the SRDF. Finally, experimental results validate our proposed algorithms for the scenarios with ideal Gaussian semantic source and some practical datasets.
Harnessing Inherent Noises for Privacy Preservation in Quantum Machine Learning
Ju, Keyi, Qin, Xiaoqi, Zhong, Hui, Zhang, Xinyue, Pan, Miao, Liu, Baoling
Quantum computing revolutionizes the way of solving complex problems and handling vast datasets, which shows great potential to accelerate the machine learning process. However, data leakage in quantum machine learning (QML) may present privacy risks. Although differential privacy (DP), which protects privacy through the injection of artificial noise, is a well-established approach, its application in the QML domain remains under-explored. In this paper, we propose to harness inherent quantum noises to protect data privacy in QML. Especially, considering the Noisy Intermediate-Scale Quantum (NISQ) devices, we leverage the unavoidable shot noise and incoherent noise in quantum computing to preserve the privacy of QML models for binary classification. We mathematically analyze that the gradient of quantum circuit parameters in QML satisfies a Gaussian distribution, and derive the upper and lower bounds on its variance, which can potentially provide the DP guarantee. Through simulations, we show that a target privacy protection level can be achieved by running the quantum circuit a different number of times.
Joint Task and Data Oriented Semantic Communications: A Deep Separate Source-channel Coding Scheme
Huang, Jianhao, Li, Dongxu, Huang, Chuan, Qin, Xiaoqi, Zhang, Wei
Semantic communications are expected to accomplish various semantic tasks with relatively less spectrum resource by exploiting the semantic feature of source data. To simultaneously serve both the data transmission and semantic tasks, joint data compression and semantic analysis has become pivotal issue in semantic communications. This paper proposes a deep separate source-channel coding (DSSCC) framework for the joint task and data oriented semantic communications (JTD-SC) and utilizes the variational autoencoder approach to solve the rate-distortion problem with semantic distortion. First, by analyzing the Bayesian model of the DSSCC framework, we derive a novel rate-distortion optimization problem via the Bayesian inference approach for general data distributions and semantic tasks. Next, for a typical application of joint image transmission and classification, we combine the variational autoencoder approach with a forward adaption scheme to effectively extract image features and adaptively learn the density information of the obtained features. Finally, an iterative training algorithm is proposed to tackle the overfitting issue of deep learning models. Simulation results reveal that the proposed scheme achieves better coding gain as well as data recovery and classification performance in most scenarios, compared to the classical compression schemes and the emerging deep joint source-channel schemes.
Toward Adaptive Semantic Communications: Efficient Data Transmission via Online Learned Nonlinear Transform Source-Channel Coding
Dai, Jincheng, Wang, Sixian, Yang, Ke, Tan, Kailin, Qin, Xiaoqi, Si, Zhongwei, Niu, Kai, Zhang, Ping
The emerging field semantic communication is driving the research of end-to-end data transmission. By utilizing the powerful representation ability of deep learning models, learned data transmission schemes have exhibited superior performance than the established source and channel coding methods. While, so far, research efforts mainly concentrated on architecture and model improvements toward a static target domain. Despite their successes, such learned models are still suboptimal due to the limitations in model capacity and imperfect optimization and generalization, particularly when the testing data distribution or channel response is different from that adopted for model training, as is likely to be the case in real-world. To tackle this, we propose a novel online learned joint source and channel coding approach that leverages the deep learning model's overfitting property. Specifically, we update the off-the-shelf pre-trained models after deployment in a lightweight online fashion to adapt to the distribution shifts in source data and environment domain. We take the overfitting concept to the extreme, proposing a series of implementation-friendly methods to adapt the codec model or representations to an individual data or channel state instance, which can further lead to substantial gains in terms of the bandwidth ratio-distortion performance. The proposed methods enable the communication-efficient adaptation for all parameters in the network without sacrificing decoding speed. Our experiments, including user study, on continually changing target source data and wireless channel environments, demonstrate the effectiveness and efficiency of our approach, on which we outperform existing state-of-the-art engineered transmission scheme (VVC combined with 5G LDPC coded transmission).