Goto

Collaborating Authors

 Qin, Can


Why Vision Language Models Struggle with Visual Arithmetic? Towards Enhanced Chart and Geometry Understanding

arXiv.org Artificial Intelligence

Vision Language Models (VLMs) have achieved remarkable progress in multimodal tasks, yet they often struggle with visual arithmetic, seemingly simple capabilities like object counting or length comparison, which are essential for relevant complex tasks like chart understanding and geometric reasoning. In this work, we first investigate the root causes of this deficiency through a suite of probing tasks focusing on basic visual arithmetic. Our analysis reveals that while pre-trained vision encoders typically capture sufficient information, the text decoder often fails to decode it correctly for arithmetic reasoning. To address this, we propose CogAlign, a novel post-training strategy inspired by Piaget's theory of cognitive development. CogAlign trains VLMs to recognize invariant properties under visual transformations. We demonstrate that this approach significantly improves the performance of three diverse VLMs on our proposed probing tasks. Furthermore, CogAlign enhances performance by an average of 4.6% on CHOCOLATE and 2.9% on MATH-VISION, outperforming or matching supervised fine-tuning methods while requiring only 60% less training data. These results highlight the effectiveness and generalizability of CogAlign in improving fundamental visual arithmetic capabilities and their transfer to downstream tasks.


DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models

arXiv.org Artificial Intelligence

Video large language models (VLLMs) have significantly advanced recently in processing complex video content, yet their inference efficiency remains constrained because of the high computational cost stemming from the thousands of visual tokens generated from the video inputs. We empirically observe that, unlike single image inputs, VLLMs typically attend visual tokens from different frames at different decoding iterations, making a one-shot pruning strategy prone to removing important tokens by mistake. Motivated by this, we present DyCoke, a training-free token compression method to optimize token representation and accelerate VLLMs. DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames, and applies dynamic KV cache reduction to prune spatially redundant tokens selectively. It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step. Extensive experimental results demonstrate that DyCoke can outperform the prior SoTA counterparts, achieving 1.5X inference speedup, 1.4X memory reduction against the baseline VLLM, while still improving the performance, with no training.


xGen-MM-Vid (BLIP-3-Video): You Only Need 32 Tokens to Represent a Video Even in VLMs

arXiv.org Artificial Intelligence

We present xGen-MM-Vid (BLIP-3-Video): a multimodal language model for videos, particularly designed to efficiently capture temporal information over multiple frames. BLIP-3-Video takes advantage of the 'temporal encoder' in addition to the conventional visual tokenizer, which maps a sequence of tokens over multiple frames into a compact set of visual tokens. This enables BLIP3-Video to use much fewer visual tokens than its competing models (e.g., 32 vs. 4608 tokens). We explore different types of temporal encoders, including learnable spatio-temporal pooling as well as sequential models like Token Turing Machines. We experimentally confirm that BLIP-3-Video obtains video question-answering accuracies comparable to much larger state-of-the-art models (e.g., 34B), while being much smaller (i.e., 4B) and more efficient by using fewer visual tokens. The project website is at https://www.salesforceairesearch.com/opensource/xGen-MM-Vid/index.html


Triple Point Masking

arXiv.org Artificial Intelligence

Existing 3D mask learning methods encounter performance bottlenecks under limited data, and our objective is to overcome this limitation. In this paper, we introduce a triple point masking scheme, named TPM, which serves as a scalable framework for pre-training of masked autoencoders to achieve multi-mask learning for 3D point clouds. Specifically, we augment the baselines with two additional mask choices (i.e., medium mask and low mask) as our core insight is that the recovery process of an object can manifest in diverse ways. Previous high-masking schemes focus on capturing the global representation but lack the fine-grained recovery capability, so that the generated pre-trained weights tend to play a limited role in the fine-tuning process. With the support of the proposed TPM, available methods can exhibit more flexible and accurate completion capabilities, enabling the potential autoencoder in the pre-training stage to consider multiple representations of a single 3D object. In addition, an SVM-guided weight selection module is proposed to fill the encoder parameters for downstream networks with the optimal weight during the fine-tuning stage, maximizing linear accuracy and facilitating the acquisition of intricate representations for new objects. Extensive experiments show that the four baselines equipped with the proposed TPM achieve comprehensive performance improvements on various downstream tasks. Our code and models are available at https://github.com/liujia99/TPM.


STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical

arXiv.org Artificial Intelligence

Large Vision-Language Models (LVLMs) have shown significant potential in assisting medical diagnosis by leveraging extensive biomedical datasets. However, the advancement of medical image understanding and reasoning critically depends on building high-quality visual instruction data, which is costly and labor-intensive to obtain, particularly in the medical domain. To mitigate this data-starving issue, we introduce Self-Training Large Language and Vision Assistant for Medical (STLLaVA-Med). The proposed method is designed to train a policy model (an LVLM) capable of auto-generating medical visual instruction data to improve data efficiency, guided through Direct Preference Optimization (DPO). Specifically, a more powerful and larger LVLM (e.g., GPT-4o) is involved as a biomedical expert to oversee the DPO fine-tuning process on the auto-generated data, encouraging the policy model to align efficiently with human preferences. We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks, demonstrating competitive zero-shot performance with the utilization of only 9% of the medical data.


SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant

arXiv.org Artificial Intelligence

Recent advancements in the vision-language model have shown notable generalization in vision-language tasks after visual instruction tuning. However, bridging the gap between the pre-trained vision encoder and the large language models becomes the whole network's bottleneck. To improve cross-modality alignment, existing works usually consider more visual instruction data covering a broader range of vision tasks to fine-tune the model for question-answering, which are costly to obtain. However, the image contains rich contextual information that has been largely under-explored. This paper first attempts to harness this overlooked context within visual instruction data, training the model to self-supervised `learning' how to ask high-quality questions. In this way, we introduce a novel framework named SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant. SQ-LLaVA exhibits proficiency in generating flexible and meaningful image-related questions while analyzing the visual clue and prior language knowledge, signifying an advanced level of generalized visual understanding. Moreover, fine-tuning SQ-LLaVA on higher-quality instruction data shows a consistent performance improvement compared with traditional visual-instruction tuning methods. This improvement highlights the efficacy of self-questioning techniques in achieving a deeper and more nuanced comprehension of visual content across various contexts.


UniControl: A Unified Diffusion Model for Controllable Visual Generation In the Wild

arXiv.org Artificial Intelligence

Achieving machine autonomy and human control often represent divergent objectives in the design of interactive AI systems. Visual generative foundation models such as Stable Diffusion show promise in navigating these goals, especially when prompted with arbitrary languages. However, they often fall short in generating images with spatial, structural, or geometric controls. The integration of such controls, which can accommodate various visual conditions in a single unified model, remains an unaddressed challenge. In response, we introduce UniControl, a new generative foundation model that consolidates a wide array of controllable condition-to-image (C2I) tasks within a singular framework, while still allowing for arbitrary language prompts. UniControl enables pixel-level-precise image generation, where visual conditions primarily influence the generated structures and language prompts guide the style and context. To equip UniControl with the capacity to handle diverse visual conditions, we augment pretrained text-to-image diffusion models and introduce a task-aware HyperNet to modulate the diffusion models, enabling the adaptation to different C2I tasks simultaneously. Trained on nine unique C2I tasks, UniControl demonstrates impressive zero-shot generation abilities with unseen visual conditions. Experimental results show that UniControl often surpasses the performance of single-task-controlled methods of comparable model sizes.


Camouflaged Image Synthesis Is All You Need to Boost Camouflaged Detection

arXiv.org Artificial Intelligence

Camouflaged objects that blend into natural scenes pose significant challenges for deep-learning models to detect and synthesize. While camouflaged object detection is a crucial task in computer vision with diverse real-world applications, this research topic has been constrained by limited data availability. We propose a framework for synthesizing camouflage data to enhance the detection of camouflaged objects in natural scenes. Our approach employs a generative model to produce realistic camouflage images, which can be used to train existing object detection models. Specifically, we use a camouflage environment generator supervised by a camouflage distribution classifier to synthesize the camouflage images, which are then fed into our generator to expand the dataset. Our framework outperforms the current state-of-the-art method on three datasets (COD10k, CAMO, and CHAMELEON), demonstrating its effectiveness in improving camouflaged object detection. This approach can serve as a plug-and-play data generation and augmentation module for existing camouflaged object detection tasks and provides a novel way to introduce more diversity and distributions into current camouflage datasets.


HIVE: Harnessing Human Feedback for Instructional Visual Editing

arXiv.org Artificial Intelligence

Incorporating human feedback has been shown to be crucial to align text generated by large language models to human preferences. We hypothesize that state-of-the-art instructional image editing models, where outputs are generated based on an input image and an editing instruction, could similarly benefit from human feedback, as their outputs may not adhere to the correct instructions and preferences of users. In this paper, we present a novel framework to harness human feedback for instructional visual editing (HIVE). Specifically, we collect human feedback on the edited images and learn a reward function to capture the underlying user preferences. We then introduce scalable diffusion model fine-tuning methods that can incorporate human preferences based on the estimated reward. Besides, to mitigate the bias brought by the limitation of data, we contribute a new 1M training dataset, a 3.6K reward dataset for rewards learning, and a 1K evaluation dataset to boost the performance of instructional image editing. We conduct extensive empirical experiments quantitatively and qualitatively, showing that HIVE is favored over previous state-of-the-art instructional image editing approaches by a large margin.


Why is the State of Neural Network Pruning so Confusing? On the Fairness, Comparison Setup, and Trainability in Network Pruning

arXiv.org Artificial Intelligence

The state of neural network pruning has been noticed to be unclear and even confusing for a while, largely due to "a lack of standardized benchmarks and metrics" [3]. To standardize benchmarks, first, we need to answer: what kind of comparison setup is considered fair? This basic yet crucial question has barely been clarified in the community, unfortunately. Meanwhile, we observe several papers have used (severely) sub-optimal hyper-parameters in pruning experiments, while the reason behind them is also elusive. These sub-optimal hyper-parameters further exacerbate the distorted benchmarks, rendering the state of neural network pruning even more obscure. Two mysteries in pruning represent such a confusing status: the performance-boosting effect of a larger finetuning learning rate, and the no-value argument of inheriting pretrained weights in filter pruning. In this work, we attempt to explain the confusing state of network pruning by demystifying the two mysteries. Specifically, (1) we first clarify the fairness principle in pruning experiments and summarize the widely-used comparison setups; (2) then we unveil the two pruning mysteries and point out the central role of network trainability, which has not been well recognized so far; (3) finally, we conclude the paper and give some concrete suggestions regarding how to calibrate the pruning benchmarks in the future. Code: https://github.com/mingsun-tse/why-the-state-of-pruning-so-confusing.