Goto

Collaborating Authors

 Qi, Geqi


TraffNet: Learning Causality of Traffic Generation for What-if Prediction

arXiv.org Artificial Intelligence

Real-time what-if traffic prediction is crucial for decision making in intelligent traffic management and control. Although current deep learning methods demonstrate significant advantages in traffic prediction, they are powerless in what-if traffic prediction due to their nature of correlation-based. Here, we present a simple deep learning framework called TraffNet that learns the mechanisms of traffic generation for what-if prediction from vehicle trajectory data. First, we use a heterogeneous graph to represent the road network, allowing the model to incorporate causal features of traffic flows, such as Origin-Destination (OD) demands and routes. Next, we propose a method for learning segment representations, which involves modeling the process of assigning OD demands onto the road network. The learned segment representations effectively encapsulate the intricate causes of traffic generation, facilitating downstream what-if traffic prediction. Finally, we conduct experiments on synthetic datasets to evaluate the effectiveness of TraffNet. The code and datasets of TraffNet is available at https://github.com/mayunyi-1999/TraffNet_code.git.


Discovery of Important Crossroads in Road Network using Massive Taxi Trajectories

arXiv.org Artificial Intelligence

A major problem in road network analysis is discovery of important crossroads, which can provide useful information for transport planning. However, none of existing approaches addresses the problem of identifying network-wide important crossroads in real road network. In this paper, we propose a novel data-driven based approach named CRRank to rank important crossroads. Our key innovation is that we model the trip network reflecting real travel demands with a tripartite graph, instead of solely analysis on the topology of road network. To compute the importance scores of crossroads accurately, we propose a HITS-like ranking algorithm, in which a procedure of score propagation on our tripartite graph is performed. We conduct experiments on CRRank using a real-world dataset of taxi trajectories. Experiments verify the utility of CRRank.