Goto

Collaborating Authors

 Pratama, Mahardhika


Latest Advancements Towards Catastrophic Forgetting under Data Scarcity: A Comprehensive Survey on Few-Shot Class Incremental Learning

arXiv.org Artificial Intelligence

Data scarcity significantly complicates the continual learning problem, i.e., how a deep neural network learns in dynamic environments with very few samples. However, the latest progress of few-shot class incremental learning (FSCIL) methods and related studies show insightful knowledge on how to tackle the problem. This paper presents a comprehensive survey on FSCIL that highlights several important aspects i.e. comprehensive and formal objectives of FSCIL approaches, the importance of prototype rectifications, the new learning paradigms based on pre-trained model and language-guided mechanism, the deeper analysis of FSCIL performance metrics and evaluation, and the practical contexts of FSCIL in various areas. Our extensive discussion presents the open challenges, potential solutions, and future directions of FSCIL.


Time and Frequency Synergy for Source-Free Time-Series Domain Adaptations

arXiv.org Artificial Intelligence

The issue of source-free time-series domain adaptations still gains scarce research attentions. On the other hand, existing approaches rely solely on time-domain features ignoring frequency components providing complementary information. This paper proposes Time Frequency Domain Adaptation (TFDA), a method to cope with the source-free time-series domain adaptation problems. TFDA is developed with a dual branch network structure fully utilizing both time and frequency features in delivering final predictions. It induces pseudo-labels based on a neighborhood concept where predictions of a sample group are aggregated to generate reliable pseudo labels. The concept of contrastive learning is carried out in both time and frequency domains with pseudo label information and a negative pair exclusion strategy to make valid neighborhood assumptions. In addition, the time-frequency consistency technique is proposed using the self-distillation strategy while the uncertainty reduction strategy is implemented to alleviate uncertainties due to the domain shift problem. Last but not least, the curriculum learning strategy is integrated to combat noisy pseudo labels. Our experiments demonstrate the advantage of our approach over prior arts with noticeable margins in benchmark problems.


Graph Mining under Data scarcity

arXiv.org Artificial Intelligence

Multitude of deep learning models have been proposed for node classification in graphs. However, they tend to perform poorly under labeled-data scarcity. Although Few-shot learning for graphs has been introduced to overcome this problem, the existing models are not easily adaptable for generic graph learning frameworks like Graph Neural Networks (GNNs). Our work proposes an Uncertainty Estimator framework that can be applied on top of any generic GNN backbone network (which are typically designed for supervised/semi-supervised node classification) to improve the node classification performance. A neural network is used to model the Uncertainty Estimator as a probability distribution rather than probabilistic discrete scalar values. We train these models under the classic episodic learning paradigm in the $n$-way, $k$-shot fashion, in an end-to-end setting. Our work demonstrates that implementation of the uncertainty estimator on a GNN backbone network improves the classification accuracy under Few-shot setting without any meta-learning specific architecture. We conduct experiments on multiple datasets under different Few-shot settings and different GNN-based backbone networks. Our method outperforms the baselines, which demonstrates the efficacy of the Uncertainty Estimator for Few-shot node classification on graphs with a GNN.


Unsupervised Few-Shot Continual Learning for Remote Sensing Image Scene Classification

arXiv.org Artificial Intelligence

A continual learning (CL) model is desired for remote sensing image analysis because of varying camera parameters, spectral ranges, resolutions, etc. There exist some recent initiatives to develop CL techniques in this domain but they still depend on massive labelled samples which do not fully fit remote sensing applications because ground truths are often obtained via field-based surveys. This paper addresses this problem with a proposal of unsupervised flat-wide learning approach (UNISA) for unsupervised few-shot continual learning approaches of remote sensing image scene classifications which do not depend on any labelled samples for its model updates. UNISA is developed from the idea of prototype scattering and positive sampling for learning representations while the catastrophic forgetting problem is tackled with the flat-wide learning approach combined with a ball generator to address the data scarcity problem. Our numerical study with remote sensing image scene datasets and a hyperspectral dataset confirms the advantages of our solution. Source codes of UNISA are shared publicly in \url{https://github.com/anwarmaxsum/UNISA} to allow convenient future studies and reproductions of our numerical results.


Cross-Domain Continual Learning via CLAMP

arXiv.org Artificial Intelligence

Artificial neural networks, celebrated for their human-like cognitive learning abilities, often encounter the well-known catastrophic forgetting (CF) problem, where the neural networks lose the proficiency in previously acquired knowledge. Despite numerous efforts to mitigate CF, it remains the significant challenge particularly in complex changing environments. This challenge is even more pronounced in cross-domain adaptation following the continual learning (CL) setting, which is a more challenging and realistic scenario that is under-explored. To this end, this article proposes a cross-domain CL approach making possible to deploy a single model in such environments without additional labelling costs. Our approach, namely continual learning approach for many processes (CLAMP), integrates a class-aware adversarial domain adaptation strategy to align a source domain and a target domain. An assessor-guided learning process is put forward to navigate the learning process of a base model assigning a set of weights to every sample controlling the influence of every sample and the interactions of each loss function in such a way to balance the stability and plasticity dilemma thus preventing the CF problem. The first assessor focuses on the negative transfer problem rejecting irrelevant samples of the source domain while the second assessor prevents noisy pseudo labels of the target domain. Both assessors are trained in the meta-learning approach using random transformation techniques and similar samples of the source domain. Theoretical analysis and extensive numerical validations demonstrate that CLAMP significantly outperforms established baseline algorithms across all experiments by at least $10\%$ margin.


Few-Shot Class Incremental Learning via Robust Transformer Approach

arXiv.org Artificial Intelligence

Few-Shot Class-Incremental Learning presents an extension of the Class Incremental Learning problem where a model is faced with the problem of data scarcity while addressing the catastrophic forgetting problem. This problem remains an open problem because all recent works are built upon the convolutional neural networks performing sub-optimally compared to the transformer approaches. Our paper presents Robust Transformer Approach built upon the Compact Convolution Transformer. The issue of overfitting due to few samples is overcome with the notion of the stochastic classifier, where the classifier's weights are sampled from a distribution with mean and variance vectors, thus increasing the likelihood of correct classifications, and the batch-norm layer to stabilize the training process. The issue of CF is dealt with the idea of delta parameters, small task-specific trainable parameters while keeping the backbone networks frozen. A non-parametric approach is developed to infer the delta parameters for the model's predictions. The prototype rectification approach is applied to avoid biased prototype calculations due to the issue of data scarcity. The advantage of ROBUSTA is demonstrated through a series of experiments in the benchmark problems where it is capable of outperforming prior arts with big margins without any data augmentation protocols.


Mixup Domain Adaptations for Dynamic Remaining Useful Life Predictions

arXiv.org Machine Learning

Mixup Domain Adaptations for Dynamic Remaining Useful Life Predictions Muhammad Furqon, Mahardhika Pratama, Lin Liu, Habibullah Habibullah, Kutluyil Dogancay We propose mix-up domain adaptation for time-series unsupervised domain adaptation. MDAN is applied to dynamic remaining useful life predictions and fault diagnosis. We propose a self-supervised learning method via a controlled reconstruction learning. Abstract Remaining Useful Life (RUL) predictions play vital role for asset planning and maintenance leading to many benefits to industries such as reduced downtime, low maintenance costs, etc. Although various efforts have been devoted to study this topic, most existing works are restricted for i.i.d conditions assuming the same condition of the training phase and the deployment phase. This paper proposes a solution to this problem where a mix-up domain adaptation (MDAN) is put forward. MDAN encompasses a three-staged mechanism where the mix-up strategy is not only performed to regularize the source and target domains but also applied to establish an intermediate mix-up domain where the source and target domains are aligned. The self-supervised learning strategy is implemented to prevent the supervision collapse problem. Rigorous evaluations have been performed where MDAN is compared to recently published works for dynamic RUL predictions.


Towards Cross-Domain Continual Learning

arXiv.org Artificial Intelligence

Continual learning is a process that involves training learning agents to sequentially master a stream of tasks or classes without revisiting past data. The challenge lies in leveraging previously acquired knowledge to learn new tasks efficiently, while avoiding catastrophic forgetting. Existing methods primarily focus on single domains, restricting their applicability to specific problems. In this work, we introduce a novel approach called Cross-Domain Continual Learning (CDCL) that addresses the limitations of being limited to single supervised domains. Our method combines inter- and intra-task cross-attention mechanisms within a compact convolutional network. This integration enables the model to maintain alignment with features from previous tasks, thereby delaying the data drift that may occur between tasks, while performing unsupervised cross-domain (UDA) between related domains. By leveraging an intra-task-specific pseudo-labeling method, we ensure accurate input pairs for both labeled and unlabeled samples, enhancing the learning process. To validate our approach, we conduct extensive experiments on public UDA datasets, showcasing its positive performance on cross-domain continual learning challenges. Additionally, our work introduces incremental ideas that contribute to the advancement of this field. We make our code and models available to encourage further exploration and reproduction of our results: \url{https://github.com/Ivsucram/CDCL}


Dynamic Long-Term Time-Series Forecasting via Meta Transformer Networks

arXiv.org Artificial Intelligence

A reliable long-term time-series forecaster is highly demanded in practice but comes across many challenges such as low computational and memory footprints as well as robustness against dynamic learning environments. This paper proposes Meta-Transformer Networks (MANTRA) to deal with the dynamic long-term time-series forecasting tasks. MANTRA relies on the concept of fast and slow learners where a collection of fast learners learns different aspects of data distributions while adapting quickly to changes. A slow learner tailors suitable representations to fast learners. Fast adaptations to dynamic environments are achieved using the universal representation transformer layers producing task-adapted representations with a small number of parameters. Our experiments using four datasets with different prediction lengths demonstrate the advantage of our approach with at least $3\%$ improvements over the baseline algorithms for both multivariate and univariate settings. Source codes of MANTRA are publicly available in \url{https://github.com/anwarmaxsum/MANTRA}.


Cross-Domain Few-Shot Learning via Adaptive Transformer Networks

arXiv.org Artificial Intelligence

Most few-shot learning works rely on the same domain assumption between the base and the target tasks, hindering their practical applications. This paper proposes an adaptive transformer network (ADAPTER), a simple but effective solution for cross-domain few-shot learning where there exist large domain shifts between the base task and the target task. ADAPTER is built upon the idea of bidirectional cross-attention to learn transferable features between the two domains. The proposed architecture is trained with DINO to produce diverse, and less biased features to avoid the supervision collapse problem. Furthermore, the label smoothing approach is proposed to improve the consistency and reliability of the predictions by also considering the predicted labels of the close samples in the embedding space. The performance of ADAPTER is rigorously evaluated in the BSCD-FSL benchmarks in which it outperforms prior arts with significant margins.