Goto

Collaborating Authors

 Prakash, Aaditya


ContriMix: Unsupervised disentanglement of content and attribute for domain generalization in microscopy image analysis

arXiv.org Artificial Intelligence

Domain generalization is critical for real-world applications of machine learning to microscopy images, including histopathology and fluorescence imaging. Artifacts in these modalities arise through a complex combination of factors relating to tissue collection and laboratory processing, as well as factors intrinsic to patient samples. In fluorescence imaging, these artifacts stem from variations across experimental batches. The complexity and subtlety of these artifacts make the enumeration of data domains intractable. Therefore, augmentation-based methods of domain generalization that require domain identifiers and manual fine-tuning are inadequate in this setting. To overcome this challenge, we introduce ContriMix, a domain generalization technique that learns to generate synthetic images by disentangling and permuting the biological content ("content") and technical variations ("attributes") in microscopy images. ContriMix does not rely on domain identifiers or handcrafted augmentations and makes no assumptions about the input characteristics of images. We assess the performance of ContriMix on two pathology datasets dealing with patch classification and Whole Slide Image label prediction tasks respectively (Camelyon17-WILDS and RCC subtyping), and one fluorescence microscopy dataset (RxRx1-WILDS). Without any access to domain identifiers at train or test time, ContriMix performs similar or better than current state-of-the-art methods in all these datasets, motivating its usage for microscopy image analysis in real-world settings where domain information is hard to come by. The code for ContriMix can be found at https://gitlab.com/huutan86/contrimix


Synthetic DOmain-Targeted Augmentation (S-DOTA) Improves Model Generalization in Digital Pathology

arXiv.org Artificial Intelligence

Machine learning algorithms have the potential to improve patient outcomes in digital pathology. However, generalization of these tools is currently limited by sensitivity to variations in tissue preparation, staining procedures and scanning equipment that lead to domain shift in digitized slides. To overcome this limitation and improve model generalization, we studied the effectiveness of two Synthetic DOmain-Targeted Augmentation (S-DOTA) methods, namely CycleGAN-enabled Scanner Transform (ST) and targeted Stain Vector Augmentation (SVA), and compared them against the International Color Consortium (ICC) profile-based color calibration (ICC Cal) method and a baseline method using traditional brightness, color and noise augmentations. We evaluated the ability of these techniques to improve model generalization to various tasks and settings: four models, two model types (tissue segmentation and cell classification), two loss functions, six labs, six scanners, and three indications (hepatocellular carcinoma (HCC), nonalcoholic steatohepatitis (NASH), prostate adenocarcinoma). We compared these methods based on the macro-averaged F1 scores on in-distribution (ID) and out-of-distribution (OOD) test sets across multiple domains, and found that S-DOTA methods (i.e., ST and SVA) led to significant improvements over ICC Cal and baseline on OOD data while maintaining comparable performance on ID data. Thus, we demonstrate that S-DOTA may help address generalization due to domain shift in real world applications.


Condensed Memory Networks for Clinical Diagnostic Inferencing

AAAI Conferences

Diagnosis of a clinical condition is a challenging task, which often requires significant medical investigation. Previous work related to diagnostic inferencing problems mostly consider multivariate observational data (e.g. physiological signals, lab tests etc.). In contrast, we explore the problem using free-text medical notes recorded in an electronic health record (EHR). Complex tasks like these can benefit from structured knowledge bases, but those are not scalable. We instead exploit raw text from Wikipedia as a knowledge source. Memory networks have been demonstrated to be effective in tasks which require comprehension of free-form text. They use the final iteration of the learned representation to predict probable classes. We introduce condensed memory neural networks (C-MemNNs), a novel model with iterative condensation of memory representations that preserves the hierarchy of features in the memory. Experiments on the MIMIC-III dataset show that the proposed model outperforms other variants of memory networks to predict the most probable diagnoses given a complex clinical scenario.


Reconstructing Self Organizing Maps as Spider Graphs for better visual interpretation of large unstructured datasets

arXiv.org Machine Learning

Self-Organizing Maps (SOM) are popular unsupervised artificial neural network used to reduce dimensions and visualize data. Visual interpretation from Self-Organizing Maps (SOM) has been limited due to grid approach of data representation, which makes inter-scenario analysis impossible. The paper proposes a new way to structure SOM. This model reconstructs SOM to show strength between variables as the threads of a cobweb and illuminate inter-scenario analysis. While Radar Graphs are very crude representation of spider web, this model uses more lively and realistic cobweb representation to take into account the difference in strength and length of threads. This model allows for visualization of highly unstructured dataset with large number of dimensions, common in Bigdata sources.