Goto

Collaborating Authors

 Pradel, Michael


AI Software Engineer: Programming with Trust

arXiv.org Artificial Intelligence

Columbia University, USA Large Language Models (LLMs) have shown surprising proficie ncy in generating code snippets, promising to automate large parts of software engineering via artifici al intelligence (AI). We argue that successfully deploying AI software engineers requires a level of trust eq ual to or even greater than the trust established by human-driven software engineering practices. The recen t trend toward LLM agents offers a path toward integrating the power of LLMs to create new code with the powe r of analysis tools to increase trust in the code. This opinion piece comments on whether LLM agents could dominate software engineering workflows in the future and whether the focus of programming will shift from programming at scale to programming with trust. Software engineering is undergoing a significant phase of greater au tomation owing to the emergence of Large Language Models (LLMs) for code.


Treefix: Enabling Execution with a Tree of Prefixes

arXiv.org Artificial Intelligence

The ability to execute code is a prerequisite for various dynamic program analyses. Learning-guided execution has been proposed as an approach to enable the execution of arbitrary code snippets by letting a neural model predict likely values for any missing variables. Although state-of-the-art learning-guided execution approaches, such as LExecutor, can enable the execution of a relative high amount of code, they are limited to predicting a restricted set of possible values and do not use any feedback from previous executions to execute even more code. This paper presents Treefix, a novel learning-guided execution approach that leverages LLMs to iteratively create code prefixes that enable the execution of a given code snippet. The approach addresses the problem in a multi-step fashion, where each step uses feedback about the code snippet and its execution to instruct an LLM to improve a previously generated prefix. This process iteratively creates a tree of prefixes, a subset of which is returned to the user as prefixes that maximize the number of executed lines in the code snippet. In our experiments with two datasets of Python code snippets, Treefix achieves 25% and 7% more coverage relative to the current state of the art in learning-guided execution, covering a total of 84% and 82% of all lines in the code snippets.


You Name It, I Run It: An LLM Agent to Execute Tests of Arbitrary Projects

arXiv.org Artificial Intelligence

The ability to execute the test suite of a project is essential in many scenarios, e.g., to assess code quality and code coverage, to validate code changes made by developers or automated tools, and to ensure compatibility with dependencies. Despite its importance, executing the test suite of a project can be challenging in practice because different projects use different programming languages, software ecosystems, build systems, testing frameworks, and other tools. These challenges make it difficult to create a reliable, universal test execution method that works across different projects. This paper presents ExecutionAgent, an automated technique that installs arbitrary projects, configures them to run test cases, and produces project-specific scripts to reproduce the setup. Inspired by the way a human developer would address this task, our approach is a large language model-based agent that autonomously executes commands and interacts with the host system. The agent uses meta-prompting to gather guidelines on the latest technologies related to the given project, and it iteratively refines its process based on feedback from the previous steps. Our evaluation applies ExecutionAgent to 50 open-source projects that use 14 different programming languages and many different build and testing tools. The approach successfully executes the test suites of 33/55 projects, while matching the test results of ground truth test suite executions with a deviation of only 7.5\%. These results improve over the best previously available technique by 6.6x. The costs imposed by the approach are reasonable, with an execution time of 74 minutes and LLM costs of 0.16 dollars, on average per project. We envision ExecutionAgent to serve as a valuable tool for developers, automated programming tools, and researchers that need to execute tests across a wide variety of projects.


RepairAgent: An Autonomous, LLM-Based Agent for Program Repair

arXiv.org Artificial Intelligence

Automated program repair has emerged as a powerful technique to mitigate the impact of software bugs on system reliability and user experience. This paper introduces RepairAgent, the first work to address the program repair challenge through an autonomous agent based on a large language model (LLM). Unlike existing deep learning-based approaches, which prompt a model with a fixed prompt or in a fixed feedback loop, our work treats the LLM as an agent capable of autonomously planning and executing actions to fix bugs by invoking suitable tools. RepairAgent freely interleaves gathering information about the bug, gathering repair ingredients, and validating fixes, while deciding which tools to invoke based on the gathered information and feedback from previous fix attempts. Key contributions that enable RepairAgent include a set of tools that are useful for program repair, a dynamically updated prompt format that allows the LLM to interact with these tools, and a finite state machine that guides the agent in invoking the tools. Our evaluation on the popular Defects4J dataset demonstrates RepairAgent's effectiveness in autonomously repairing 164 bugs, including 39 bugs not fixed by prior techniques. Interacting with the LLM imposes an average cost of 270,000 tokens per bug, which, under the current pricing of OpenAI's GPT-3.5 model, translates to 14 cents of USD per bug. To the best of our knowledge, this work is the first to present an autonomous, LLM-based agent for program repair, paving the way for future agent-based techniques in software engineering.


Quality and Trust in LLM-generated Code

arXiv.org Artificial Intelligence

Machine learning models are widely used but can also often be wrong. Users would benefit from a reliable indication of whether a given output from a given model should be trusted, so a rational decision can be made whether to use the output or not. For example, outputs can be associated with a confidence measure; if this confidence measure is strongly associated with likelihood of correctness, then the model is said to be well-calibrated. In this case, for example, high-confidence outputs could be safely accepted, and low-confidence outputs rejected. Calibration has so far been studied in non-generative (e.g., classification) settings, especially in Software Engineering. However, generated code can quite often be wrong: Developers need to know when they should e.g., directly use, use after careful review, or discard model-generated code; thus Calibration is vital in generative settings. However, the notion of correctness of generated code is non-trivial, and thus so is Calibration. In this paper we make several contributions. We develop a framework for evaluating the Calibration of code-generating models. We consider several tasks, correctness criteria, datasets, and approaches, and find that by and large generative code models are not well-calibrated out of the box. We then show how Calibration can be improved, using standard methods such as Platt scaling. Our contributions will lead to better-calibrated decision-making in the current use of code generated by language models, and offers a framework for future research to further improve calibration methods for generative models in Software Engineering.


LExecutor: Learning-Guided Execution

arXiv.org Artificial Intelligence

Executing code is essential for various program analysis tasks, e.g., to detect bugs that manifest through exceptions or to obtain execution traces for further dynamic analysis. However, executing an arbitrary piece of code is often difficult in practice, e.g., because of missing variable definitions, missing user inputs, and missing third-party dependencies. This paper presents LExecutor, a learning-guided approach for executing arbitrary code snippets in an underconstrained way. The key idea is to let a neural model predict missing values that otherwise would cause the program to get stuck, and to inject these values into the execution. For example, LExecutor injects likely values for otherwise undefined variables and likely return values of calls to otherwise missing functions. We evaluate the approach on Python code from popular open-source projects and on code snippets extracted from Stack Overflow. The neural model predicts realistic values with an accuracy between 79.5% and 98.2%, allowing LExecutor to closely mimic real executions. As a result, the approach successfully executes significantly more code than any available technique, such as simply executing the code as-is. For example, executing the open-source code snippets as-is covers only 4.1% of all lines, because the code crashes early on, whereas LExecutor achieves a coverage of 51.6%.


Universal Fuzzing via Large Language Models

arXiv.org Artificial Intelligence

Fuzzing has achieved tremendous success in discovering bugs and vulnerabilities in various software systems. Systems under test (SUTs) that take in programming or formal language as inputs, e.g., compilers, runtime engines, constraint solvers, and software libraries with accessible APIs, are especially important as they are fundamental building blocks of software development. However, existing fuzzers for such systems often target a specific language, and thus cannot be easily applied to other languages or even other versions of the same language. Moreover, the inputs generated by existing fuzzers are often limited to specific features of the input language, and thus can hardly reveal bugs related to other or new features. This paper presents Fuzz4All, the first fuzzer that is universal in the sense that it can target many different input languages and many different features of these languages. The key idea behind Fuzz4All is to leverage large language models (LLMs) as an input generation and mutation engine, which enables the approach to produce diverse and realistic inputs for any practically relevant language. To realize this potential, we present a novel autoprompting technique, which creates LLM prompts that are wellsuited for fuzzing, and a novel LLM-powered fuzzing loop, which iteratively updates the prompt to create new fuzzing inputs. We evaluate Fuzz4All on nine systems under test that take in six different languages (C, C++, Go, SMT2, Java and Python) as inputs. The evaluation shows, across all six languages, that universal fuzzing achieves higher coverage than existing, language-specific fuzzers. Furthermore, Fuzz4All has identified 76 bugs in widely used systems, such as GCC, Clang, Z3, CVC5, OpenJDK, and the Qiskit quantum computing platform, with 47 bugs already confirmed by developers as previously unknown.


Evaluating Semantic Representations of Source Code

arXiv.org Machine Learning

Learned representations of source code enable various software developer tools, e.g., to detect bugs or to predict program properties. At the core of code representations often are word embeddings of identifier names in source code, because identifiers account for the majority of source code vocabulary and convey important semantic information. Unfortunately, there currently is no generally accepted way of evaluating the quality of word embeddings of identifiers, and current evaluations are biased toward specific downstream tasks. This paper presents IdBench, the first benchmark for evaluating to what extent word embeddings of identifiers represent semantic relatedness and similarity. The benchmark is based on thousands of ratings gathered by surveying 500 software developers. We use IdBench to evaluate state-of-the-art embedding techniques proposed for natural language, an embedding technique specifically designed for source code, and lexical string distance functions, as these are often used in current developer tools. Our results show that the effectiveness of embeddings varies significantly across different embedding techniques and that the best available embeddings successfully represent semantic relatedness. On the downside, no existing embedding provides a satisfactory representation of semantic similarities, e.g., because embeddings consider identifiers with opposing meanings as similar, which may lead to fatal mistakes in downstream developer tools. IdBench provides a gold standard to guide the development of novel embeddings that address the current limitations.


Context2Name: A Deep Learning-Based Approach to Infer Natural Variable Names from Usage Contexts

arXiv.org Machine Learning

Most of the JavaScript code deployed in the wild has been minified, a process in which identifier names are replaced with short, arbitrary and meaningless names. Minified code occupies less space, but also makes the code extremely difficult to manually inspect and understand. This paper presents Context2Name, a deep learningbased technique that partially reverses the effect of minification by predicting natural identifier names for minified names. The core idea is to predict from the usage context of a variable a name that captures the meaning of the variable. The approach combines a lightweight, token-based static analysis with an auto-encoder neural network that summarizes usage contexts and a recurrent neural network that predict natural names for a given usage context. We evaluate Context2Name with a large corpus of real-world JavaScript code and show that it successfully predicts 47.5% of all minified identifiers while taking only 2.9 milliseconds on average to predict a name. A comparison with the state-of-the-art tools JSNice and JSNaughty shows that our approach performs comparably in terms of accuracy while improving in terms of efficiency. Moreover, Context2Name complements the state-of-the-art by predicting 5.3% additional identifiers that are missed by both existing tools.