Goto

Collaborating Authors

 Pradeep K. Ravikumar



Game Design for Eliciting Distinguishable Behavior

Neural Information Processing Systems

The ability to inferring latent psychological traits from human behavior is key to developing personalized human-interacting machine learning systems. Approaches to infer such traits range from surveys to manually-constructed experiments and games. However, these traditional games are limited because they are typically designed based on heuristics. In this paper, we formulate the task of designing behavior diagnostic games that elicit distinguishable behavior as a mutual information maximization problem, which can be solved by optimizing a variational lower bound. Our framework is instantiated by using prospect theory to model varying player traits, and Markov Decision Processes to parameterize the games. We validate our approach empirically, showing that our designed games can successfully distinguish among players with different traits, outperforming manually-designed ones by a large margin.



Representer Point Selection for Explaining Deep Neural Networks

Neural Information Processing Systems

We propose to explain the predictions of a deep neural network, by pointing to the set of what we call representer points in the training set, for a given test point prediction. Specifically, we show that we can decompose the pre-activation prediction of a neural network into a linear combination of activations of training points, with the weights corresponding to what we call representer values, which thus capture the importance of that training point on the learned parameters of the network. But it provides a deeper understanding of the network than simply training point influence: with positive representer values corresponding to excitatory training points, and negative values corresponding to inhibitory points, which as we show provides considerably more insight. Our method is also much more scalable, allowing for real-time feedback in a manner not feasible with influence functions.



Closed-form Estimators for High-dimensional Generalized Linear Models

Neural Information Processing Systems

We propose a class of closed-form estimators for GLMs under high-dimensional sampling regimes. Our class of estimators is based on deriving closed-form variants of the vanilla unregularized MLE but which are (a) well-defined even under high-dimensional settings, and (b) available in closed-form. We then perform thresholding operations on this MLE variant to obtain our class of estimators. We derive a unified statistical analysis of our class of estimators, and show that it enjoys strong statistical guarantees in both parameter error as well as variable selection, that surprisingly match those of the more complex regularized GLM MLEs, even while our closed-form estimators are computationally much simpler. We derive instantiations of our class of closed-form estimators, as well as corollaries of our general theorem, for the special cases of logistic, exponential and Poisson regression models. We corroborate the surprising statistical and computational performance of our class of estimators via extensive simulations.


A Dirty Model for Multi-task Learning

Neural Information Processing Systems

We consider multi-task learning in the setting of multiple linear regression, and where some relevant features could be shared across the tasks.


On Human-Aligned Risk Minimization

Neural Information Processing Systems

The statistical decision theoretic foundations of modern machine learning have largely focused on the minimization of the expectation of some loss function for a given task. However, seminal results in behavioral economics have shown that human decision-making is based on different risk measures than the expectation of any given loss function. In this paper, we pose the following simple question: in contrast to minimizing expected loss, could we minimize a better human-aligned risk measure? While this might not seem natural at first glance, we analyze the properties of such a revised risk measure, and surprisingly show that it might also better align with additional desiderata like fairness that have attracted considerable recent attention. We focus in particular on a class of human-aligned risk measures inspired by cumulative prospect theory. We empirically study these risk measures, and demonstrate their improved performance on desiderata such as fairness, in contrast to the traditional workhorse of expected loss minimization.