Goto

Collaborating Authors

 Polyanskiy, Yury


Kernel-Based Tests for Likelihood-Free Hypothesis Testing

arXiv.org Machine Learning

Given $n$ observations from two balanced classes, consider the task of labeling an additional $m$ inputs that are known to all belong to \emph{one} of the two classes. Special cases of this problem are well-known: with complete knowledge of class distributions ($n=\infty$) the problem is solved optimally by the likelihood-ratio test; when $m=1$ it corresponds to binary classification; and when $m\approx n$ it is equivalent to two-sample testing. The intermediate settings occur in the field of likelihood-free inference, where labeled samples are obtained by running forward simulations and the unlabeled sample is collected experimentally. In recent work it was discovered that there is a fundamental trade-off between $m$ and $n$: increasing the data sample $m$ reduces the amount $n$ of training/simulation data needed. In this work we (a) introduce a generalization where unlabeled samples come from a mixture of the two classes -- a case often encountered in practice; (b) study the minimax sample complexity for non-parametric classes of densities under \textit{maximum mean discrepancy} (MMD) separation; and (c) investigate the empirical performance of kernels parameterized by neural networks on two tasks: detection of the Higgs boson and detection of planted DDPM generated images amidst CIFAR-10 images. For both problems we confirm the existence of the theoretically predicted asymmetric $m$ vs $n$ trade-off.


The Sample Complexity of Approximate Rejection Sampling with Applications to Smoothed Online Learning

arXiv.org Artificial Intelligence

Suppose we are given access to $n$ independent samples from distribution $\mu$ and we wish to output one of them with the goal of making the output distributed as close as possible to a target distribution $\nu$. In this work we show that the optimal total variation distance as a function of $n$ is given by $\tilde\Theta(\frac{D}{f'(n)})$ over the class of all pairs $\nu,\mu$ with a bounded $f$-divergence $D_f(\nu\|\mu)\leq D$. Previously, this question was studied only for the case when the Radon-Nikodym derivative of $\nu$ with respect to $\mu$ is uniformly bounded. We then consider an application in the seemingly very different field of smoothed online learning, where we show that recent results on the minimax regret and the regret of oracle-efficient algorithms still hold even under relaxed constraints on the adversary (to have bounded $f$-divergence, as opposed to bounded Radon-Nikodym derivative). Finally, we also study efficacy of importance sampling for mean estimates uniform over a function class and compare importance sampling with rejection sampling.


On Neural Architectures for Deep Learning-based Source Separation of Co-Channel OFDM Signals

arXiv.org Artificial Intelligence

We study the single-channel source separation problem involving orthogonal frequency-division multiplexing (OFDM) signals, which are ubiquitous in many modern-day digital communication systems. Related efforts have been pursued in monaural source separation, where state-of-the-art neural architectures have been adopted to train an end-to-end separator for audio signals (as 1-dimensional time series). In this work, through a prototype problem based on the OFDM source model, we assess -- and question -- the efficacy of using audio-oriented neural architectures in separating signals based on features pertinent to communication waveforms. Perhaps surprisingly, we demonstrate that in some configurations, where perfect separation is theoretically attainable, these audio-oriented neural architectures perform poorly in separating co-channel OFDM waveforms. Yet, we propose critical domain-informed modifications to the network parameterization, based on insights from OFDM structures, that can confer about 30 dB improvement in performance.


Data-Driven Blind Synchronization and Interference Rejection for Digital Communication Signals

arXiv.org Artificial Intelligence

We study the potential of data-driven deep learning methods for separation of two communication signals from an observation of their mixture. In particular, we assume knowledge on the generation process of one of the signals, dubbed signal of interest (SOI), and no knowledge on the generation process of the second signal, referred to as interference. This form of the single-channel source separation problem is also referred to as interference rejection. We show that capturing high-resolution temporal structures (nonstationarities), which enables accurate synchronization to both the SOI and the interference, leads to substantial performance gains. With this key insight, we propose a domain-informed neural network (NN) design that is able to improve upon both "off-the-shelf" NNs and classical detection and interference rejection methods, as demonstrated in our simulations. Our findings highlight the key role communication-specific domain knowledge plays in the development of data-driven approaches that hold the promise of unprecedented gains.


Exploiting Temporal Structures of Cyclostationary Signals for Data-Driven Single-Channel Source Separation

arXiv.org Artificial Intelligence

We study the problem of single-channel source separation (SCSS), and focus on cyclostationary signals, which are particularly suitable in a variety of application domains. Unlike classical SCSS approaches, we consider a setting where only examples of the sources are available rather than their models, inspiring a data-driven approach. For source models with underlying cyclostationary Gaussian constituents, we establish a lower bound on the attainable mean squared error (MSE) for any separation method, model-based or data-driven. Our analysis further reveals the operation for optimal separation and the associated implementation challenges. As a computationally attractive alternative, we propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator. We demonstrate in simulation that, with suitable domain-informed architectural choices, our U-Net method can approach the optimal performance with substantially reduced computational burden.


Sharp regret bounds for empirical Bayes and compound decision problems

arXiv.org Machine Learning

We consider the classical problems of estimating the mean of an $n$-dimensional normally (with identity covariance matrix) or Poisson distributed vector under the squared loss. In a Bayesian setting the optimal estimator is given by the prior-dependent conditional mean. In a frequentist setting various shrinkage methods were developed over the last century. The framework of empirical Bayes, put forth by Robbins (1956), combines Bayesian and frequentist mindsets by postulating that the parameters are independent but with an unknown prior and aims to use a fully data-driven estimator to compete with the Bayesian oracle that knows the true prior. The central figure of merit is the regret, namely, the total excess risk over the Bayes risk in the worst case (over the priors). Although this paradigm was introduced more than 60 years ago, little is known about the asymptotic scaling of the optimal regret in the nonparametric setting. We show that for the Poisson model with compactly supported and subexponential priors, the optimal regret scales as $\Theta((\frac{\log n}{\log\log n})^2)$ and $\Theta(\log^3 n)$, respectively, both attained by the original estimator of Robbins. For the normal mean model, the regret is shown to be at least $\Omega((\frac{\log n}{\log\log n})^2)$ and $\Omega(\log^2 n)$ for compactly supported and subgaussian priors, respectively, the former of which resolves the conjecture of Singh (1979) on the impossibility of achieving bounded regret; before this work, the best regret lower bound was $\Omega(1)$. In addition to the empirical Bayes setting, these results are shown to hold in the compound setting where the parameters are deterministic. As a side application, the construction in this paper also leads to improved or new lower bounds for density estimation of Gaussian and Poisson mixtures.


Intrinsic Dimension Estimation

arXiv.org Machine Learning

It has long been thought that high-dimensional data encountered in many practical machine learning tasks have low-dimensional structure, i.e., the manifold hypothesis holds. A natural question, thus, is to estimate the intrinsic dimension of a given population distribution from a finite sample. We introduce a new estimator of the intrinsic dimension and provide finite sample, non-asymptotic guarantees. We then apply our techniques to get new sample complexity bounds for Generative Adversarial Networks (GANs) depending only on the intrinsic dimension of the data.


Sequential prediction under log-loss and misspecification

arXiv.org Machine Learning

We consider the question of sequential prediction under the log-loss in terms of cumulative regret. Namely, given a hypothesis class of distributions, learner sequentially predicts the (distribution of the) next letter in sequence and its performance is compared to the baseline of the best constant predictor from the hypothesis class. The well-specified case corresponds to an additional assumption that the data-generating distribution belongs to the hypothesis class as well. Here we present results in the more general misspecified case. Due to special properties of the log-loss, the same problem arises in the context of competitive-optimality in density estimation, and model selection. For the $d$-dimensional Gaussian location hypothesis class, we show that cumulative regrets in the well-specified and misspecified cases asymptotically coincide. In other words, we provide an $o(1)$ characterization of the distribution-free (or PAC) regret in this case -- the first such result as far as we know. We recall that the worst-case (or individual-sequence) regret in this case is larger by an additive constant ${d\over 2} + o(1)$. Surprisingly, neither the traditional Bayesian estimators, nor the Shtarkov's normalized maximum likelihood achieve the PAC regret and our estimator requires special "robustification" against heavy-tailed data. In addition, we show two general results for misspecified regret: the existence and uniqueness of the optimal estimator, and the bound sandwiching the misspecified regret between well-specified regrets with (asymptotically) close hypotheses classes.


Self-regularizing Property of Nonparametric Maximum Likelihood Estimator in Mixture Models

arXiv.org Machine Learning

Introduced by Kiefer and Wolfowitz \cite{KW56}, the nonparametric maximum likelihood estimator (NPMLE) is a widely used methodology for learning mixture odels and empirical Bayes estimation. Sidestepping the non-convexity in mixture likelihood, the NPMLE estimates the mixing distribution by maximizing the total likelihood over the space of probability measures, which can be viewed as an extreme form of overparameterization. In this paper we discover a surprising property of the NPMLE solution. Consider, for example, a Gaussian mixture model on the real line with a subgaussian mixing distribution. Leveraging complex-analytic techniques, we show that with high probability the NPMLE based on a sample of size $n$ has $O(\log n)$ atoms (mass points), significantly improving the deterministic upper bound of $n$ due to Lindsay \cite{lindsay1983geometry1}. Notably, any such Gaussian mixture is statistically indistinguishable from a finite one with $O(\log n)$ components (and this is tight for certain mixtures). Thus, absent any explicit form of model selection, NPMLE automatically chooses the right model complexity, a property we term \emph{self-regularization}. Extensions to other exponential families are given. As a statistical application, we show that this structural property can be harnessed to bootstrap existing Hellinger risk bound of the (parametric) MLE for finite Gaussian mixtures to the NPMLE for general Gaussian mixtures, recovering a result of Zhang \cite{zhang2009generalized}.


Communication Complexity of Estimating Correlations

arXiv.org Machine Learning

We characterize the communication complexity of the following distributed estimation problem. Alice and Bob observe infinitely many iid copies of $\rho$-correlated unit-variance (Gaussian or $\pm1$ binary) random variables, with unknown $\rho\in[-1,1]$. By interactively exchanging $k$ bits, Bob wants to produce an estimate $\hat\rho$ of $\rho$. We show that the best possible performance (optimized over interaction protocol $\Pi$ and estimator $\hat \rho$) satisfies $\inf_{\Pi,\hat\rho}\sup_\rho \mathbb{E} [|\rho-\hat\rho|^2] = \Theta(\tfrac{1}{k})$. Furthermore, we show that the best possible unbiased estimator achieves performance of $1+o(1)\over {2k\ln 2}$. Curiously, thus, restricting communication to $k$ bits results in (order-wise) similar minimax estimation error as restricting to $k$ samples. Our results also imply an $\Omega(n)$ lower bound on the information complexity of the Gap-Hamming problem, for which we show a direct information-theoretic proof. Notably, the protocol achieving (almost) optimal performance is one-way (non-interactive). For one-way protocols we also prove the $\Omega(\tfrac{1}{k})$ bound even when $\rho$ is restricted to any small open sub-interval of $[-1,1]$ (i.e. a local minimax lower bound). %We do not know if this local behavior remains true in the interactive setting. Our proof techniques rely on symmetric strong data-processing inequalities, various tensorization techniques from information-theoretic interactive common-randomness extraction, and (for the local lower bound) on the Otto-Villani estimate for the Wasserstein-continuity of trajectories of the Ornstein-Uhlenbeck semigroup.