Piwowarski, Benjamin
Structural Deep Encoding for Table Question Answering
Mouravieff, Raphaël, Piwowarski, Benjamin, Lamprier, Sylvain
Although Transformers-based architectures excel at processing textual information, their naive adaptation for tabular data often involves flattening the table structure. This simplification can lead to the loss of essential inter-dependencies between rows, columns, and cells, while also posing scalability challenges for large tables. To address these issues, prior works have explored special tokens, structured embeddings, and sparse attention patterns. In this paper, we conduct a comprehensive analysis of tabular encoding techniques, which highlights the crucial role of attention sparsity in preserving structural information of tables. We also introduce a set of novel sparse attention mask designs for tabular data, that not only enhance computational efficiency but also preserve structural integrity, leading to better overall performance.
Survey on Question Answering over Visually Rich Documents: Methods, Challenges, and Trends
Barboule, Camille, Piwowarski, Benjamin, Chabot, Yoan
Using Large Language Models (LLMs) for Visually-rich Document Understanding (VrDU) has significantly improved performance on tasks requiring both comprehension and generation, such as question answering, albeit introducing new challenges. This survey explains how VrDU models enhanced by LLMs function, covering methods for integrating VrD features into LLMs and highlighting key challenges.
Probing Language Models on Their Knowledge Source
Tighidet, Zineddine, Mogini, Andrea, Mei, Jiali, Piwowarski, Benjamin, Gallinari, Patrick
Large Language Models (LLMs) often encounter conflicts between their learned, internal (parametric knowledge, PK) and external knowledge provided during inference (contextual knowledge, CK). Understanding how LLMs models prioritize one knowledge source over the other remains a challenge. In this paper, we propose a novel probing framework to explore the mechanisms governing the selection between PK and CK in LLMs. Using controlled prompts designed to contradict the model's PK, we demonstrate that specific model activations are indicative of the knowledge source employed. We evaluate this framework on various LLMs of different sizes and demonstrate that mid-layer activations, particularly those related to relations in the input, are crucial in predicting knowledge source selection, paving the way for more reliable models capable of handling knowledge conflicts effectively.
What Makes Multimodal In-Context Learning Work?
Baldassini, Folco Bertini, Shukor, Mustafa, Cord, Matthieu, Soulier, Laure, Piwowarski, Benjamin
Large Language Models have demonstrated remarkable performance across various tasks, exhibiting the capacity to swiftly acquire new skills, such as through In-Context Learning (ICL) with minimal demonstration examples. In this work, we present a comprehensive framework for investigating Multimodal ICL (M-ICL) in the context of Large Multimodal Models. We consider the best open-source multimodal models (e.g., IDEFICS, OpenFlamingo) and a wide range of multimodal tasks. Our study unveils several noteworthy findings: (1) M-ICL primarily relies on text-driven mechanisms, showing little to no influence from the image modality. (2) When used with advanced-ICL strategy (like RICES), M-ICL is not better than a simple strategy based on majority voting over context examples. Moreover, we identify several biases and limitations of M-ICL that warrant consideration prior to deployment. Code available at https://gitlab.com/folbaeni/multimodal-icl
Training Table Question Answering via SQL Query Decomposition
Mouravieff, Raphaël, Piwowarski, Benjamin, Lamprier, Sylvain
Table Question-Answering involves both understanding the natural language query and grounding it in the context of the input table to extract the relevant information. In this context, many methods have highlighted the benefits of intermediate pre-training from SQL queries. However, while most approaches aim at generating final answers from inputs directly, we claim that there is better to do with SQL queries during training. By learning to imitate a restricted portion of SQL-like algebraic operations, we show that their execution flow provides intermediate supervision steps that allow increased generalization and structural reasoning compared with classical approaches of the field. Our study bridges the gap between semantic parsing and direct answering methods and provides useful insights regarding what types of operations should be predicted by a generative architecture or be preferably executed by an external algorithm.
LoRaLay: A Multilingual and Multimodal Dataset for Long Range and Layout-Aware Summarization
Nguyen, Laura, Scialom, Thomas, Piwowarski, Benjamin, Staiano, Jacopo
Text Summarization is a popular task and an active area of research for the Natural Language Processing community. By definition, it requires to account for long input texts, a characteristic which poses computational challenges for neural models. Moreover, real-world documents come in a variety of complex, visually-rich, layouts. This information is of great relevance, whether to highlight salient content or to encode long-range interactions between textual passages. Yet, all publicly available summarization datasets only provide plain text content. To facilitate research on how to exploit visual/layout information to better capture long-range dependencies in summarization models, we present LoRaLay, a collection of datasets for long-range summarization with accompanying visual/layout information. We extend existing and popular English datasets (arXiv and PubMed) with layout information and propose four novel datasets -- consistently built from scholar resources -- covering French, Spanish, Portuguese, and Korean languages. Further, we propose new baselines merging layout-aware and long-range models -- two orthogonal approaches -- and obtain state-of-the-art results, showing the importance of combining both lines of research.
SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval
Formal, Thibault, Lassance, Carlos, Piwowarski, Benjamin, Clinchant, Stéphane
In neural Information Retrieval (IR), ongoing research is directed towards improving the first retriever in ranking pipelines. Learning dense embeddings to conduct retrieval using efficient approximate nearest neighbors methods has proven to work well. Meanwhile, there has been a growing interest in learning \emph{sparse} representations for documents and queries, that could inherit from the desirable properties of bag-of-words models such as the exact matching of terms and the efficiency of inverted indexes. Introduced recently, the SPLADE model provides highly sparse representations and competitive results with respect to state-of-the-art dense and sparse approaches. In this paper, we build on SPLADE and propose several significant improvements in terms of effectiveness and/or efficiency. More specifically, we modify the pooling mechanism, benchmark a model solely based on document expansion, and introduce models trained with distillation. We also report results on the BEIR benchmark. Overall, SPLADE is considerably improved with more than $9$\% gains on NDCG@10 on TREC DL 2019, leading to state-of-the-art results on the BEIR benchmark.
To Beam Or Not To Beam: That is a Question of Cooperation for Language GANs
Scialom, Thomas, Dray, Paul-Alexis, Lamprier, Sylvain, Piwowarski, Benjamin, Staiano, Jacopo
Due to the discrete nature of words, language GANs require to be optimized from rewards provided by discriminator networks, via reinforcement learning methods. This is a much harder setting than for continuous tasks, which enjoy gradient flows from discriminators to generators, usually leading to dramatic learning instabilities. However, we claim that this can be solved by making discriminator and generator networks cooperate to produce output sequences during training. These cooperative outputs, inherently built to obtain higher discrimination scores, not only provide denser rewards for training, but also form a more compact artificial set for discriminator training, hence improving its accuracy and stability. In this paper, we show that our SelfGAN framework, built on this cooperative principle, outperforms Teacher Forcing and obtains state-of-the-art results on two challenging tasks, Summarization and Question Generation.
Transductive Zero-Shot Learning using Cross-Modal CycleGAN
Bordes, Patrick, Zablocki, Eloi, Piwowarski, Benjamin, Gallinari, Patrick
In Computer Vision, Zero-Shot Learning (ZSL) aims at classifying unseen classes -- classes for which no matching training image exists. Most of ZSL works learn a cross-modal mapping between images and class labels for seen classes. However, the data distribution of seen and unseen classes might differ, causing a domain shift problem. Following this observation, transductive ZSL (T-ZSL) assumes that unseen classes and their associated images are known during training, but not their correspondence. As current T-ZSL approaches do not scale efficiently when the number of seen classes is high, we tackle this problem with a new model for T-ZSL based upon CycleGAN. Our model jointly (i) projects images on their seen class labels with a supervised objective and (ii) aligns unseen class labels and visual exemplars with adversarial and cycle-consistency objectives. We show the efficiency of our Cross-Modal CycleGAN model (CM-GAN) on the ImageNet T-ZSL task where we obtain state-of-the-art results. We further validate CM-GAN on a language grounding task, and on a new task that we propose: zero-shot sentence-to-image matching on MS COCO.
Answers Unite! Unsupervised Metrics for Reinforced Summarization Models
Scialom, Thomas, Lamprier, Sylvain, Piwowarski, Benjamin, Staiano, Jacopo
Abstractive summarization approaches based on Reinforcement Learning (RL) have recently been proposed to overcome classical likelihood maximization. RL enables to consider complex, possibly non-differentiable, metrics that globally assess the quality and relevance of the generated outputs. ROUGE, the most used summarization metric, is known to suffer from bias towards lexical similarity as well as from suboptimal accounting for fluency and readability of the generated abstracts. W e thus explore and propose alternative evaluation measures: the reported human-evaluation analysis shows that the proposed metrics, based on Question Answering, favorably compares to ROUGE - with the additional property of not requiring reference summaries. Training a RL-based model on these metrics leads to improvements (both in terms of human or automated metrics) over current approaches that use ROUGE as a reward.