Goto

Collaborating Authors

 Pitkow, Zachary


Stimulus domain transfer in recurrent models for large scale cortical population prediction on video

Neural Information Processing Systems

To better understand the representations in visual cortex, we need to generate better predictions of neural activity in awake animals presented with their ecological input: natural video. Despite recent advances in models for static images, models for predicting responses to natural video are scarce and standard linear-nonlinear models perform poorly. We developed a new deep recurrent network architecture that predicts inferred spiking activity of thousands of mouse V1 neurons simultaneously recorded with two-photon microscopy, while accounting for confounding factors such as the animal's gaze position and brain state changes related to running state and pupil dilation. Powerful system identification models provide an opportunity to gain insight into cortical functions through in silico experiments that can subsequently be tested in the brain. However, in many cases this approach requires that the model is able to generalize to stimulus statistics that it was not trained on, such as band-limited noise and other parameterized stimuli. We investigated these domain transfer properties in our model and find that our model trained on natural images is able to correctly predict the orientation tuning of neurons in responses to artificial noise stimuli. Finally, we show that we can fully generalize from movies to noise and maintain high predictive performance on both stimulus domains by fine-tuning only the final layer's weights on a network otherwise trained on natural movies. The converse, however, is not true.


Stimulus domain transfer in recurrent models for large scale cortical population prediction on video

Neural Information Processing Systems

To better understand the representations in visual cortex, we need to generate better predictions of neural activity in awake animals presented with their ecological input: natural video. Despite recent advances in models for static images, models for predicting responses to natural video are scarce and standard linear-nonlinear models perform poorly. We developed a new deep recurrent network architecture that predicts inferred spiking activity of thousands of mouse V1 neurons simultaneously recorded with two-photon microscopy, while accounting for confounding factors such as the animal's gaze position and brain state changes related to running state and pupil dilation. Powerful system identification models provide an opportunity to gain insight into cortical functions through in silico experiments that can subsequently be tested in the brain. However, in many cases this approach requires that the model is able to generalize to stimulus statistics that it was not trained on, such as band-limited noise and other parameterized stimuli. We investigated these domain transfer properties in our model and find that our model trained on natural images is able to correctly predict the orientation tuning of neurons in responses to artificial noise stimuli. Finally, we show that we can fully generalize from movies to noise and maintain high predictive performance on both stimulus domains by fine-tuning only the final layer's weights on a network otherwise trained on natural movies. The converse, however, is not true.


Inference by Reparameterization in Neural Population Codes

Neural Information Processing Systems

Behavioral experiments on humans and animals suggest that the brain performs probabilistic inference to interpret its environment. Here we present a new general-purpose, biologically-plausible neural implementation of approximate inference. The neural network represents uncertainty using Probabilistic Population Codes (PPCs), which are distributed neural representations that naturally encode probability distributions, and support marginalization and evidence integration in a biologically-plausible manner. By connecting multiple PPCs together as a probabilistic graphical model, we represent multivariate probability distributions. Approximate inference in graphical models can be accomplished by message-passing algorithms that disseminate local information throughout the graph. An attractive and often accurate example of such an algorithm is Loopy Belief Propagation (LBP), which uses local marginalization and evidence integration operations to perform approximate inference efficiently even for complex models. Unfortunately, a subtle feature of LBP renders it neurally implausible. However, LBP can be elegantly reformulated as a sequence of Tree-based Reparameterizations (TRP) of the graphical model. We re-express the TRP updates as a nonlinear dynamical system with both fast and slow timescales, and show that this produces a neurally plausible solution. By combining all of these ideas, we show that a network of PPCs can represent multivariate probability distributions and implement the TRP updates to perform probabilistic inference. Simulations with Gaussian graphical models demonstrate that the neural network inference quality is comparable to the direct evaluation of LBP and robust to noise, and thus provides a promising mechanism for general probabilistic inference in the population codes of the brain.


Compressive neural representation of sparse, high-dimensional probabilities

Neural Information Processing Systems

This paper shows how sparse, high-dimensional probability distributions could be represented by neurons with exponential compression. The representation is a novel application of compressive sensing to sparse probability distributions rather than to the usual sparse signals. The compressive measurements correspond to expected values of nonlinear functions of the probabilistically distributed variables. When these expected values are estimated by sampling, the quality of the compressed representation is limited only by the quality of sampling. Since the compression preserves the geometric structure of the space of sparse probability distributions, probabilistic computation can be performed in the compressed domain. Interestingly, functions satisfying the requirements of compressive sensing can be implemented as simple perceptrons. If we use perceptrons as a simple model of feedforward computation by neurons, these results show that the mean activity of a relatively small number of neurons can accurately represent a high-dimensional joint distribution implicitly, even without accounting for any noise correlations. This comprises a novel hypothesis for how neurons could encode probabilities in the brain.


Learning unbelievable probabilities

Neural Information Processing Systems

Loopy belief propagation performs approximate inference on graphical models with loops. One might hope to compensate for the approximation by adjusting model parameters. Learning algorithms for this purpose have been explored previously, and the claim has been made that every set of locally consistent marginals can arise from belief propagation run on a graphical model. On the contrary, here we show that many probability distributions have marginals that cannot be reached by belief propagation using any set of model parameters or any learning algorithm. We call such marginals `unbelievable.' This problem occurs whenever the Hessian of the Bethe free energy is not positive-definite at the target marginals. All learning algorithms for belief propagation necessarily fail in these cases, producing beliefs or sets of beliefs that may even be worse than the pre-learning approximation. We then show that averaging inaccurate beliefs, each obtained from belief propagation using model parameters perturbed about some learned mean values, can achieve the unbelievable marginals.